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1 REPORT SUMMARY 

To aid in the development of monitoring strategies for the ARP forest plan, this report aims to 

(1) provide guidance on current ecological monitoring efforts conducted through the Front 

Range Collaborative Forest Landscape Restoration Program (CFLRP), (2) demonstrate 

application of these efforts to ARP forest plan monitoring, and (3) discuss advantages and 

limitations of current and potential monitoring efforts. This report focuses on monitoring the 

impact of restoration treatments on forest structure, composition, and spatial patterns; wildfire 

hazard and WUI risk; protection of soil and water resources; and enhancement of wildlife 

habitat. The analyses presented in this report are included to demonstrate potentially useful 

methods for conducting landscape-scale monitoring and to lay the groundwork for future 

discussions to further develop and adapt these strategies as appropriate for the ARP. The results 

presented are preliminary and not intended to inform any specific management decisions 

without further discussion and development in collaboration with ARP staff. 

Plot-based monitoring of forest structure for the CFLRP using Common Stand Exam (CSE) 

data generally show that restoration treatments achieve basal area reductions of approximately 

30% and density reductions near 50% with minor changes in overstory composition. Remote 

sensing methods suggest that CFLRP restoration treatments decrease canopy cover, and 

increase the size, complexity, and continuity of gaps. ARP management activities in the Red 

Feather generally follow these broad trends. However, field-based approaches may not be 

feasible forest plan monitoring, thus we review some recent remote sensing techniques that 

may be applicable. Recently developed remote sensing tools such as LandsatLinkr may be an 

ideal tool for tracking large changes in forest structure at the large spatial and temporal scales 

required for forest planning. 

To demonstrate a potential approach for monitoring changes in wildfire and WUI risk, we used 

a USFS wildfire risk assessment framework to estimate changes in wildfire WUI risk from fuel 

reduction treatments in the Red Feather area. Combining data on wildfire probability with fire 

intensity potential information from FlamMap, and a remotely sensed WUI map, we found that 

fuel treatment effects in the Red Feather area vary due to starting forest conditions, fuel 

treatment types, and placement of treatments relatively to WUI. Metrics of WUI risk are 

sensitive to spatial definitions of the WUI, so it is important to clearly define metrics used in 

goals and objectives when monitoring wildfire risk reduction at a landscape scale. See text for 

complete details. 

To demonstrate potential approach for monitoring forest management practices on reducing 

the potential for post-fire erosion, we used a linked-model approach coupling information on 

fire probability and intensity with models of erosion and sediment delivery. We found that 

fuel reduction treatments in the Red Feather area decrease post-fire erosion hazard in treated 

areas by 48-70% in the first year post-fire. In addition, we found that the hazard of sediment 

delivery to streams is concentrated in a few canyons, especially North Lone Pine Creek, as 

well as the high slopes of the Bald Mountains. Such information is potentially useful for both 

planning and prioritization of treatment in areas with steeper slopes or higher fire likelihood 

which may result in larger reductions on landscape-scale erosion risk.  

Lastly, we outline the landscape-scale approach used by the Front Range CFLRP to monitor 

wildlife abundance and habitat. Components of this approach may be adopted and/or adapted 
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for use in the ARP monitoring plan. We outline the filtering process used by the CFLRP to 

select 12 focal species/guild for monitoring based on species distributions, ecological 

function, conservation status, potential management impacts, and sampling logistics. We also 

include a summary description of the monitoring approach and protocols adopted by the 

CFLRP and currently being implemented by the Bird Conservancy of the Rockies to monitor 

avian communities.   
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2 INTRODUCTION AND APPROACH 

The Challenge Cost-Share Agreement (12-CS-11021000-033) between the Arapaho & 

Roosevelt National Forests & Pawnee National Grassland (ARP) and the Colorado Forest 

Restoration Institute (CFRI) at Colorado State University includes a project (Modification 6) 

to explore the extent to which project-scale monitoring conducted by CFRI can be leveraged 

with other data to develop landscape-scale monitoring tools for the ARP. This report describes 

the outcomes of this project. 

In compliance with the 2012 National Forest System Land Management Planning Rule, every 

National Forest is required to develop and implement a Forest Plan Monitoring strategy to 

assess trends and the effects of national forest management on key resources. The Arapaho-

Roosevelt national Forest–Pawnee National Grass land (ARP) is currently developing 

monitoring protocols to assess the effectiveness of management activities toward achieving 

their Forest Plan’s desired objectives. The current ARP Monitoring Plan (“monitoring plan”) 

enumerates several goals and questions related to ecological processes to be monitored at 

landscape-scales. A few of the landscape-level goals outlined in the monitoring plan include: 

 assuring a range of forest structural stages of community types (question 3), 

 reducing the number of acres with high risk of wildfire (question 10), 

 preserving and protecting water and soil resources (question 12),  

 assessing the status of influential and dependent wildlife species (question 6), 

 and assessing how management activities influence aquatic ecosystems (question 5). 

The Colorado Front Range Collaborative Forest Landscape Restoration Project (CFLRP) seeks 

to implement fuel reduction and ecological restoration through forest management on U.S.D.A. 

Forest Service (USFS) lands including the ARP and the Pike & San Isabel National Forests. 

Within the Colorado Front Range, approximately 1.5 million acres of forests have been 

identified as in need of fuel reduction treatments and/or ecological restoration (Front Range 

Roundtable Fuels Treatment Partnership 2006). Similar to the goals of the ARP monitoring 

plan, this program emphasizes ecological monitoring of management impacts at landscape-

scales. 

Given the overlap in goals and geography with CFLRP monitoring, development of the ARP 

monitoring plan may be informed by monitoring methodologies and tools being used by the 

CFLRP. Such consideration can facilitate potential adoption or adaptation of analytical 

approaches useful for the ARP monitoring plan. The goals of this report are to 

1. present an overview of landscape-scale monitoring currently utilized by the CFLRP, 

2. present pilot analyses of ARP thinning treatments to demonstrate potential outputs 

produced by these monitoring strategies, 

3. discuss applicability of CFLRP approaches to ARP monitoring 

4. explore other potentially applicable monitoring approaches, and 

5. create a foundation for development of a landscape-scale monitoring toolbox in 

cooperation with ARP staff. 

Based on the monitoring priorities above, in this report, we address monitoring for management 

impacts on (1) forest structure, composition, and spatial patterns (Section 3), (2) wildfire hazard 

and WUI risk (Section 4), (3) protection of soil and water resources (Section 5), and (4) 
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enhancement of wildlife habitat (Section 6). We conducted pilot analyses at the HUC-12 

watershed scale, focusing on forested portions of several HUC-12 sub-basins in the Red 

Feather area (e.g., Elkhorn Creek and the North and South Fork Lone Pine Creek sub-

watersheds, average extent of approx. 21,000 acres each) where treatment data from the Front 

Range CFLRP is readily available. This scale of analysis was chosen to be large enough to 

include multiple treatment areas, while small enough to feasibly conduct pilot analyses. Pilot 

analyses were demonstrated over a 5 year period (from 2010–2014) in order to match the 

current availability of Landfire data used in the fire behavior monitoring. 

In the sections below, we outline an exploratory framework for landscape-scale monitoring of 

several key questions from the ARP monitoring plan. The analyses consist of the compilation 

of currently existing data from the ARP (e.g., CSE, and satellite imagery), the use of currently 

existing models of fire hazard and erosion potential (e.g., FlamMap, RUSLE), an exploratory 

assessment of CFLRP wildlife monitoring data, and potential approaches for aquatic ecosystem 

monitoring. 

The analyses presented in this report are intended to demonstrate potentially useful methods 

for conducting landscape-scale monitoring at the ARP. The pilot analyses are intended to 

illustrate required data, methodologies, and potential outputs of various monitoring 

approaches. The results in this report are not intended to inform any management decisions in 

their current state. Rather, further discussion and development of these approaches with ARP 

staff will be required so that appropriate adjustments can be incorporated to best address 

particular management concerns of the ARP. 
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3 FOREST STRUCTURE, COMPOSITION, AND HETEROGENEITY 

3.1 Demonstration of CFLRP approach 

The current monitoring plan (see excerpt in Table 1) calls for “assuring representation of the 

full range of structural stages of community types” across the ARP (question 3), calling for 

forest management to “retain old-growth qualities” and restore “compositional, structural, and 

functional elements” of forests that will “perpetuate diversity”. The plan suggests assessment 

of indicators such as forest composition, structure, and spatial heterogeneity. 

The approach of the Front Range CFLRP to monitor management impacts on elements of forest 

structure emphasizes stand-scale measurements of changes in forest structure and composition  

as a results of restoration treatments (Cannon et al.; Addington et al. 2014; Cannon and Barrett 

2016; Barrett et al. 2017). In addition, the CFLRP utilizes landscape-scale assessments of 

individual restoration treatments to determine how management actions alter forest structural 

patterns, particularly emphasizing the assessment of gaps, tree groups, and isolated scattered 

trees (Cannon et al. in prep; Dickinson 2014; Pelz and Dickinson 2014; Cannon and Barrett 

2016). Here we present an overview of the methodologies used by the CFLRP to assess forest 

structure, composition, and spatial patterns, and we demonstrate application of these methods 

in the Red Feather area of the ARP.  

3.1.1 CFLRP approach for forest structure and composition monitoring 

Common Stand Exam (CSE) plots are standard inventory procedures implemented by the 

USFS before silvicultural management activities. Because surveys are regularly implemented 

prior to forest management, they provide an excellent opportunity to obtain pre-treatment 

monitoring data and a framework for plot-based monitoring. The CFLRP approach advocates 

re-measuring CSE plots to facilitate implementation and ecological monitoring. This approach 

provides valuable insight to changes in forest composition and structure resulting from 

management activities. When implementing CSE plots for forest compositional and structural 

monitoring, the CFLRP approach recommends stratifying an area by cover type, treatment 

type, and aspect, with at least three plots in each stratified area with accompanying control 

plots.  

Table 1. Excerpt from ARP Draft Forest Plan Monitoring Questions related to changes in forest structure, composition, 

and spatial heterogeneity. 

Monitoring Questions Forest Plan Direction Indicators 

3. Has the ARP made 

progress toward assuring 

adequate representation 

of the full range of 

structural stages of 

community types across 

the Forests and 

Grassland? 

Goals (excerpt): 

3. In ponderosa pine and Douglas-fir forests, manage 

existing old growth and mature forests to retain and 

encourage old-growth qualities. 

8. Provide a range of successional stages of 

community types across the Forests and Grassland 

landscapes that maintains ecosystem integrity. 

34. Maintain and restore where necessary, the 

compositional, structural, and functional elements 

which will perpetuate diversity 

Forest 

composition, 

structure, and 

spatial 

heterogeneity 
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The CFLRP approach has suggested numerous modifications to traditional CSE plots (Figure 

1), to help address the diverse monitoring questions intrinsic to Front Range forests (Barrett et 

al. 2017). Briefly, CSE plots include one overstory subplot, two Brown’s transects for 

measurement of surface fuels, three regeneration subplots, and five understory vegetation 

subplots. Overstory subplots are variable radius (BAF 10) plots around used to tally trees > 5 

inches diameter at breast height (DBH). For each tree, species, DBH, height, crown base height, 

live crown ratio, canopy position, and signs of animal damage are recorded. The two Brown’s 

transects are standard, orthogonal 50-foot-long transects, intended to measure litter and duff 

depths; and 1-, 10-, 100-, and 1000-hour fuels at regularly spaced intervals. See Barrett et al. 

(2017) and Brown (1974) for detailed protocols. The three regeneration subplots are fixed area 

(0.004 acre, radius = 7.45 ft.) subplots located over each plot center, and at the end of each 

Brown’s transect. All seedlings (< 4.5 feet tall) and saplings (< 5 inches DBH) are tallied by 

species. Finally, the five understory subplots are 1 m2
 (10.7 ft2), and are used to calculate 

percent cover of functional groups (grass, forb, shrub, litter, rock, and bare ground). These 

plots are located at plot center, in the middle of each Brown’s transect, and at the end of each 

Brown’s transect. 

Given repeated measurements (pre- and post-treatment) at CSE plots, analyses can summarize 

changes in forest structure, composition, fuels, regeneration, and coarse understory cover as a 

result of forest management activity. Specifically, analyses for the CFLRP focus on changes in 

forest structure and composition, and include summaries of changes in basal area, tree density, 

quadratic mean diameter, and the proportion of ponderosa pine relative to other conifers. 

3.1.2 Pilot results from Red Feather 

We analyze available CSE data from the Red Feather area (Figure 2) to illustrate how changes 

in forest structure and composition can be monitored using the CFLRP approach, with an 

emphasis on forest density, quadratic mean diameter, and relative proportions of ponderosa 

pine. CSE data was obtained for the Red Feather 1, Red Feather 2, Red Feather 4, and Magic 

 
Figure 1. CSE plot design recommended for CFLRP monitoring. Note that analyses in this report only utilize at variable 

radius (BAF 10) plot centered over plot center 

 

Figure. Excerpt from ARP Draft Forest Plan Monitoring Questions related to changes in forest structure, composition, and 

spatial heterogeneity. 
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Sky projects within Red Feather area. Only pre-treatment data was available at Red Feather 1, 

Red Feather 2, and Red Feather 4, thus paired, pre- and post-treatment analyses could only be 

completed at in the Magic Sky treatment. Magic Sky had 217 CSE plots, however, only 90 

could be used in analysis, as a large portion of points were outside of the treatment boundary. 

Of the 90 usable plots, 39 were pre-treatment, and 51 were post-treatment. The remaining 127 

plots were outside the treatment area (Figure 2). Changes in forest structure and composition 

 
Figure 2. Map of Red Feather Area CSE Plots. Only pre- and post- treatment data was available for the Magic Sky project. 

Red points show 51 post-treatment plots (39 of which were available pre-treatment). Black points in the upper right show 

plots that fell outside of the treatment area 

Table 2 Changes in forest structure and composition metrics at Magic Sky. Pre- and post-treatment 

means (sd) are presented. Change between pre- and post-treatment means (Δ), and p-value resulting 

from two sample t-tests for unequal variances are presented. *Welch-Satterthwaite t-tests were 

conducted to account for unequal variances. 

Variable Pre-treatment Post-treatment Δ p 

Basal area (ft2 ac-1)* 64.3 (37.0) 47.3 (26.5) -17.0 0.0177 

Trees density (ac-1)* 306.7 (390.4) 126.8 (233.2) -179.9 0.0134 

Quadratic mean diameter (inches) 9.1 (4.5) 11.7 (4.7) +2.6 0.0079 

Ponderosa pine basal area (ft2 ac-1)* 53.1 (33.9) 37.9 (24.0) -15.2 0.0199 

Douglas-fir basal area (ft2 ac-1) 8.0 (11.1) 7.3 (9.3) ns 0.7641 

% Ponderosa by basal area 85.4 (20.5) 79.4 (30.2) ns 0.2918 
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metrics among usable plots were tested using two sample t-tests comparing pre- and post-

treatment plots. 

 Changes in forest structure were significantly different resulting from forest management 

(Table 2, Figure 3). Basal area decreased by 17 ft2 ac-1, tree density acre decreased by 179.9 

trees ac-1, and quadratic mean diameter increased 2.6 in. Conversely, for forest composition 

metrics, only ponderosa pine basal area was significantly lower after forest management (15.2 

ft2 ac-1 decrease). Although Douglas-fir basal area decreased 0.7 ft2 ac-1, and the percent of 

ponderosa pine by basal area increased 6%, none of these measures were significantly different 

between pre- and post-treatment measurements Table 2, Figure 4).  

3.1.3 CFLRP approach for spatial heterogeneity monitoring 

A primary goal of the CFLRP is for restoration treatments to “establish a complex mosaic of 

forest density, size, and age at stand and landscape scales,” and the program has adopted a 

remote sensing approach to monitor how restoration treatments alter forest spatial structure. 

Remote sensing techniques are used to classify satellite or aerial imagery of restoration 

treatments into GIS layers classified as canopy and openings (protocol detailed in Cannon et 

al., forthcoming; Pelz and Dickinson 2014). 

Briefly, cloud-free, snow-free, leaf-on, satellite imagery temporally flanking the dates of 

restoration treatments are acquired from three sources including WorldView-02 (WV02), 

GeoEye-01 (GE01), and/or Quickbird-02 (QB02) satellites with a spatial resolution of 

approximately 3 m and spectral resolutions ranging from 4- to 8-bands (Figure 5A). Satellite 

imagery is classified using a two-step approach beginning with supervised classification to 

classify canopy, openings, and shadows; shadows are subsequently classified into canopy and 

 
Figure 3. Magic Sky forest structure summaries. Basal area (left), tree density (middle) and quadratic mean diameter 

(right) pre- and post-treatment. Figures show mean values and standard errors. 

 

 
Figure 4. Magic Sky forest composition summaries. Ponderosa pine basal area (left), Douglas-fir basal area (middle), and 

proportion of ponderosa pine relative to other conifers (right) pre- and post-treatment. Figures show mean values and 

standard errors. 
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openings using gray-level thresholding of NDVI values (Cannon et al., forthcoming; Lillesand 

et al. 2015). Classifications are trained by an analyst via stratification of approximately 100 

training regions across areas identified as canopy, openings and shadows; and imagery is 

classified using a maximum likelihood classification in ArcMap 10 (Figure 5B). Following 

initial classification, areas reclassified as shadow are classified into canopy or openings using 

an image-specific NDVI threshold (Lillesand et al. 2015).  

Each classified image is processed to estimate spatial metrics relevant to fine-scale spatial 

structure including canopy cover and openings. In addition, ‘large gaps’ are delineated in each 

classified image a modification of the PatchMorph algorithm (Girvetz and Greco 2007). Here, 

we define gaps as contiguous regions with < 5% canopy cover over an area of 0.045 ha (i.e., 

12 m radius)—a neighborhood size relevant for abundance and growth of regenerating 

seedlings (Boyden et al. 2012). Gaps delineated for portions of the Magic Sky treatment area 

shown in Figure 5C. Once gaps are delineated, gap metrics including gap density, gap size 

distributions, shape index, and aggregation metrics such as nearest neighbor distances 

(McGarigal et al. 2012) are quantified using the SDMTools (VanDerWal et al. 2014) package 

in R. Last, metrics of shape and arrangement of gaps such as the gap decay coefficient 

Table 3. Treatment units analyzed within the Red Feather area. Thinning treatments were completed between 2010 and 

2015.  

Treatment Unit Management activity Area (ac) 

Red Feather 1 FRP TU:10C Pre-commercial Thin 121 

Red Feather 1 FRP TU:18B Pre-commercial Thin 111 

Red Feather 1 FRP TU:18C Pre-commercial Thin 36.9 

Red Feather 1 FRP TU:19S Pre-commercial Thin 72.4 

Red Feather 1 FRP TU:17A Pre-commercial Thin 64.3 

Red Feather 1 FRP TU:17B Pre-commercial Thin 8.50 

Red Feather 1 FRP TU:19T Pre-commercial Thin 12.0 

Red Feather 1 FRP TU:25B Pre-commercial Thin 8.89 

Swamp Creek Trail Thinning for Hazardous Fuels Reduction 18.9 

Dowdy Lake Recreation Areas Thinning for Hazardous Fuels Reduction 18.6 

Pingree Hill FRP TU:5 Thinning for Hazardous Fuels Reduction 99.8 

Pingree Hill FRP TU: 9A Thinning for Hazardous Fuels Reduction 91.0 

Dowdy Lake Campground Thinning for Hazardous Fuels Reduction 69.4 

 Total 733 

 

 

Figure 5. (A) Pre-treatment satellite imagery of Magic Sky area within the Arapahoe Roosevelt National Forest. (B) Classified 

imagery indicating canopy (green) and openings (yellow). (C) Demonstration of gap delineation (magenta) overlaid onto 

classified imagery indicating portions of imagery with <10% canopy cover over a 0.05 ha area. 
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(modified from Collins et al. 2017) are calculated to evaluate changes in spatial patterns of 

gaps due to thinning and restoration treatments. 

3.1.4 Pilot analyses of spatial heterogeneity metrics in the Red Feather area 

Using the methods above, we illustrate how changes in forest spatial heterogeneity may be 

monitored with emphasis on changes in canopy cover and creation and maintenance of large 

gaps. Fuel reduction and restoration treatments completed in the Red Feather area were 

identified using the Hazardous Fuel Reduction Treatments database (US Forest Service Natural 

Resource Management 2017) from the U.S. Forest Service Activity Tracking System 

(FACTS). A summary of the thinning treatments included can be found in Table 3. Treatment 

boundaries for all thinning treatments completed during the 5-year period (2010–2015) were 

extracted, and satellite imagery was acquired, classified, and analyzed as described above 

(Figure 6). Thinning treatments completed in the Red Feather area during this period total 

approximately 730 acres. Statistical changes of spatial pattern metrics were tested using a 

paired t-test comparing pre- and post-treatment metrics in the 13 treatment units identified in 

the Red Feather area (Table 3). Imagery was not available for a single treatment area. 

Table 4. Changes in spatial patterns resulting from 2010–2014 thinning treatments listed in Table 3. Pre- and Post-treatment means 

(s.d.) are presented. Change between pre- and post-treatment means (Δ), and p-value resulting from paired t-test comparing pre- and 

post-treatment means for each of the 13 treatment areas listed in Table 3.  

Variable Pre-treatment Post-treatment Δ p 

Canopy cover (%) 54.0 (14.9) 28.5 (5.24) -25.5 0.0003 

Gap cover (%) 26.0 (20.4) 54.0 (15.0) +28.0 < 0.0001 

Gap density (ha-1) 0.855 (0.452) 0.713 (0.373) ns 0.2181 

Median gap size (ha) 0.131 (0.102) 0.288 (0.531) ns 0.3464 

Gap size CV (unitless) 1.26 (0.692) 2.05 (0.787) +0.791 < 0.0001 

Median gap shape index (unitless) 0.986 (0.0824) 1.13 (0.258) ns 0.1108 

Nearest neighbor index (m) 27.2 (33.2) 8.00 (3.44) ns 0.0648 

Gap decay coefficient (unitless) 0.0568 (0.017) 0.0393 (0.0116) -0.0175 0.0008 

 

 

Figure 6. Example illustrating results of supervised classification and gap delineation. Figure illustrates canopy and gap cover 

before (left panel) and after (right panel) thinning treatments in one 111 acre treatment unit in the Red Feather area. 
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 Analyses of thinning treatments in the Red Feather area indicate changes in multiple aspects 

of canopy cover and gap spatial metrics. Notably, across the 13 treatment units examined, 

management activities decreased canopy cover from 54% to 29.5%, and more than doubled 

gap cover from 26.0% to 54.0% (Table 4). In addition, several changes in gap spatial pattern 

resulted from thinning treatments. Median gap size increased from 0.13 ha to 0.29 ha, although 

the change was not significant due to high variability in median gap size (Table 4; Figure 7). 

In addition, the coefficient of variation of gap size increased approximately 63% from 1.26 to 

2.05 (Table 4; Figure 7) indicating an increase in gap size variability. Lastly, gap decay 

coefficient decreased from 0.0568 to 0.0393 (Table 4; Figure 7). This metric captures the size 

distribution of gaps (see Collins et al. 2017) and indicates that a greater proportion of gap area 

is concentrated into gap interiors (i.e., those areas distant from gap edges). Thus, gaps following 

thinning treatments can be characterized as larger and more continuous relative to the pre-

treatment conditions. 

 
Figure 7. Changes in forest spatial patterns of fuel reduction/thinning treatments in the Red Feather area completed 

between 2010 and 2014. Note log scale on y-axis for median gap size. 

 

 

 

Figure 8. Comparison of pre- and post-treatment canopy cover and gap cover in Red Feather between north- and south-

facing slopes.  

 

 

 

   



 

14 

 

Desired conditions of the Front Range CFLRP specify that forest structure and spatial patterns 

on ponderosa pine dominated forests on dry topographies (e.g., ridge or south-facing slopes) 

should differ from those on more mesic slopes (e.g., valleys, draws, north-facing slopes) in 

order to mimic natural drivers of heterogeneity (Dickinson and SHSFRR 2014). Specifically, 

desired conditions of the CFLRP suggest that gaps and openings should be larger and more 

frequent on dry slopes wile smaller and less frequent on mesic slopes so that heterogeneity at 

larger scales due to processes driven by topography can be maintained (Dickinson and 

SHSFRR 2014). It should be noted, however, that preliminary analyses of historical 

reconstruction data of the Front Range indicates that variability among aspects may be smaller 

than original expected (M. Battaglia, unpublished data). Here, we present summary data 

illustrating changes in canopy cover and gap cover before and after thinning treatments on 

north versus south slopes in the Red Feather area. Using a 30-m digital elevation model, north 

and south slopes were identified as any region with an aspect of 0 ± 45o and 180 ± 45o, 

respectively. Data on pre- and post-treatment canopy cover and gap cover was summarized 

within these regions for all treatment units indicated in Table 3. 

As shown in Figure 8, before thinning treatments, canopy cover  was twice as high on north-

facing slopes (59%) relative to south-facing slopes (29%); however after thinning treatments 

north- and south-facing slopes had relatively similar levels of canopy cover (29% and 27% 

respectively). In a similar pattern, gap cover varied more between north- and south-facing 

slopes before thinning treatments (15% vs. 44%, respectively) compared to after thinning 

treatments (48% vs. 56%; Figure 8). Thus, variability in canopy cover and gap cover among 

topographic gradients was decreased by thinning treatments. Such analyses that compare 

changes in treatment outcomes across topographic gradients can inform how forest 

management activities at stand-scales may affect landscape-heterogeneity. However, careful 

consideration should be given to the outcomes expected and desired variability across these 

environmental gradients. 

3.2 Application of CFLRP analyses 

Application of CFLRP monitoring protocols for monitoring changes in forest structure, 

composition, and spatial patterns for landscape-scale monitoring presents synergies and 

challenges for application to ARP landscape-scale monitoring. Below we outline advantages 

and disadvantages of the CFLRP monitoring approaches and suggest alterations or alternatives 

to these approaches for ARP monitoring. 

Common Stand Exam (CSE) data is collected regularly on the Forest prior to restoration 

treatments in order to understand forest structure for developing management prescriptions. 

For CFLRP monitoring these same protocols are also applied following restoration treatments 

to understand the extent to which implementation of the prescription achieved the desired goals 

in the short-term. An advantage of using CSE plots for ARP monitoring is that protocols and 

structures are already in place to allow CSE protocols to be collected by ARP directly or 

through subcontractors. However, the CSE approach also presents several challenges to 

consider for adoption to landscape-scale monitoring. 

1. Data collection from CSE plots are typically implemented only in areas where treatment 

planning is underway, thus the current approach is not appropriate to capture change 

occurring in portions of the forest that are not under consideration for active management. 

In such areas, natural disturbances from fire, insect outbreaks, wind throw, and 
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demographic processes can alter forest structure in composition in ways that will not be 

captured by CSE plots alone. 

2. Currently, post-treatment data from CSE plots are collected only for CFLRP-related 

projects (K. Zimlinghaus, personal communication). Due to changes in funding and/or 

contractors within some CFLRP projects, in many cases thinning and restoration treatments 

on the ARP do not have paired data (i.e., pre- or post-treatment data is missing), making 

consistent assessment of changes in forest composition difficult. 

3. In a CFLRP monitoring report, Addington et al. (2014) noted that variable radius plots 

collected for project planning purposes are less useful for monitoring applications because 

different basal area factor prisms are used. Such inconsistencies in protocols can create 

challenges for analyses and inference. Thus, recent CFLRP monitoring efforts adopt 

consistent protocols for measuring tree overstory. 

4. CSE plots are typically implemented immediately following forest management activities, 

thus their value for ecological monitoring is limited. Implementation of CSE plots at longer 

post-treatment intervals (e.g., 3, 5, or 10 years) could provide long-term insights on 

treatment ecological effectiveness, longevity, and their effects on various metrics such as 

fuels, regeneration, composition, and structure over time scales relevant for forest planning. 

Spatial heterogeneity analyses currently implemented by the CFLRP for treatment monitoring 

offer an approach to monitoring changes in forest spatial patterns for the ARP. To the extent 

that they offer meaningful metrics related to Forest Plan monitoring, these methods can be 

readily adopted by the ARP to supply information on how specific management actions alter 

spatial heterogeneity in small landscapes (e.g., HUC-12). Commercially available satellite 

imagery is freely available for federal researchers and their collaborators through Digital Globe 

(http://digitalglobe.com). In addition, use of satellite imagery greatly increases the spatial and 

temporal extents over which treatment impacts on spatial heterogeneity can be evaluated 

relative to plot-based metrics developed to monitor forest heterogeneity (e.g., Briggs et al. 

2017). 

Two main challenges are associated with direct adoption of the spatial heterogeneity analyses 

of the CFLRP for ARP monitoring. First, processing, training, and analyzing satellite imagery 

requires advanced applications of GIS and remote sensing. CFRI is currently developing a 

spatial heterogeneity toolbox compatible with ArcGIS to increase efficiency, reduce costs, and 

alleviate barriers for resource managers interested in understanding changes in spatial patterns 

resulting from management actions. Second, while the spatial heterogeneity analyses offer 

inference of spatial patterns over larger temporal and spatial extents relative to plot-based 

metrics, such analyses remain challenging for monitoring at the scale of large landscapes such 

as the entire ARP. Compilation of full-coverage satellite imagery across an area as large of the 

ARP for multiple time points requires a high degree of manual imagery compilation, which is 

challenging due to the inconsistencies in seasonality, snow, and cloud coverage, which can 

obscure satellite imagery. To date, the Front Range CFLRP has avoided these difficulties by 

restricting analyses to smaller scales such as the stand-level analyses demonstrated above. 

Thus, spatial analysis at the scale of one-three HUC-12 watersheds (10,000-50,000 acres) may 

be feasibly conducted. In the next section, we outline two alternative approaches using 

remotely collected data (Landsat and LIDAR) which may provide relevant metrics applicable 

to landscape-scale Forest Plan monitoring. 

http://digitalglobe.com/
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3.3 Alternative monitoring approaches 

3.3.1 Plot-based monitoring approaches 

Ground-based plots will be required to evaluate many detailed aspects of forest structure and 

composition, (e.g., tree size distribution, fuel loadings, shrub and herbaceous abundance 

diversity, wildlife use, etc.). Current CSE data collected for the CFLRP includes only 

measurements of overstory trees and in some cases includes loading of woody surface fuels. 

However, CSE protocols have been developed for a number of additional aspects of forest 

composition (USDA Forest Service 2015). Relevant protocols can be amended to those 

currently collected by the CFLRP to provide complementary information for forest plan 

monitoring. In addition, ground-based data can be used to validate and calibrate remotely 

measured techniques using Landsat and/or LIDAR (see section 3.3.2 for further discussion). 

Techniques such as LIDAR are best calibrated using data from fixed-radius plots rather than 

variable-radius plots (Deo et al. 2016), which are the main form of stand inventories currently 

collected to monitor CFLRP projects. 

In a report prepared for the Kaibab National Forest, Ray et al. (2013) propose a ‘rapid-plot’ 

design to provide information on variables such as diameter distributions of trees and snags, 

surveys of understory vegetation, fuels, and surveys for encroachment and non-native invasive 

species. Decisions on which response variables to measure in ground plots will be most 

applicable to the ARP Plan will require specification of desired conditions of various metrics 

so that efficient sampling protocols can be developed. A second important consideration for 

deployment of a ground-based sampling strategy is the spatial distribution of plots. The number 

of plots needed for monitoring will be determined by the desired frequency of sampling, the 

resources needed for sampling, and statistical considerations to detect changes in response 

variables of particular magnitudes. Ray et al. (2013) outline an approach for placing ground 

sampling plots across a large area such as an entire National Forest using data on vegetation 

cover types available from the Landfire Project (www.landfire.gov). Following Ray et al. 

(2013), ground plots can be randomly stratified across relevant vegetation types, and 

transformations such as a cube-root transformation of cover type area can be used to more 

efficiently place sample plots across frequent and infrequent vegetation types. Such 

transformations increase efficiencies by decreasing the sampling effort in dominant forest 

cover types, and increasing sampling effort in uncommon cover types. Table 5 illustrates how 

this stratification approach can be used in the ARP. Figure 9 shows Landfire existing vegetation 

types for Red Feather for the five dominant cover types. Table 5 shows estimated areas for 

each cover type and suggests how sampling effort may be distributed across cover types for an 

assumed 200 monitoring plots.  

For the Front Range CFLRP, the majority of ecological monitoring is completed through plot-

based sampling (Young et al. 2013; Addington et al. 2014). More recently, these methods have 

been complemented with analysis of aerial and satellite imagery (Cannon et al., forthcoming; 

Cannon and Barrett 2016; Dickinson et al. 2016) to increase the scale at which inferences of 

restoration effects on forest spatial heterogeneity can be made. Traditional sampling through 

http://www.landfire.gov/
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plot-based approaches are necessary for many aspects of forest management planning, and they 

also have advantages for measuring changes in tree-diameter distributions, forest composition, 

and fine-scale changes in fuels, soils, understory composition, nutrient dynamics, and wildlife 

use. However, to best address monitoring questions at the landscape scale, approaches with 

larger spatial extents may be more appropriate for feasibly monitoring the status and trends of 

forest structure over extensive areas such as the ARP. Here, we outline potential applications 

of remote sensing techniques for landscape-scale monitoring of forest structure and 

composition across the ARP. Currently the CFLRP is engaged only in plot- and stand-scale 

Table 5. Major existing vegetation types in Red Feather demonstrating example distribution of sampling points using a 

cubic-root stratification of sampling points. See Figure C for example of treatment placement by cover type in Red Feather 

using stratified sampling with cube-root transformation of area. Note that estimated plots in each vegetation cover type are 

for example only based on an arbitrary total sampling effort of 200 plots. 

Vegetation cover type % Cover Est. area (ha) 

Cube root 

area (ha) 

Sampling 

effort (%) 

Est. plots 

(total n = 200) 

Interior ponderosa pine 28.1% 7,271 19.37 24.7% 49 

Lodgepole pine 21.3% 5,508 17.66 22.5% 45 

Interior Douglas-fir 20.8% 5,372 17.51 22.3% 45 

Wyoming big sagebrush 6.8% 1,759 12.07 15.4% 31 

Aspen 6.5% 1,686 11.90 15.2% 30 

Total 83.6% 21,596 78.52 100.0% 200 

 

 

 

Figure 9. Major existing vegetation types in Red Feather demonstrating example distribution of sampling points using a 

cubic-root stratification of sampling points. See Table 5 for estimations of cover and sampling calculations.  
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analyses and few larger scale analyses have been conducted to assess changes in forest structure 

and composition from CFLRP treatments, although current efforts compiling treatment 

activities across large extents (e.g., Caggiano 2017) may lead to such considerations. 

3.3.2 Remote-sensing based approaches (satellite and LIDAR) 

In a report prepared for the Kaibab National forest, Dickson et al. (2011) explore potential 

application of Landsat TM for monitoring changes in forest structure which may be most 

directly applicable for use for ARP forest monitoring. Briefly, this study explored using 

Landsat TM imagery to predict forest structural metrics across the entire Kaibab National 

Forest based on training and validation data estimated from approximately 600 FIA plots. 

Available data from FIA plots were modeled in the Forest Vegetation Simulator (FVS) to 

estimate elements of forest structure to dates congruent with imagery acquisition dates. 

Dickson et al. (2011) found remotely derived approaches modeled stand density index, basal 

area, and canopy cover with over 70% of variance explained. All models of stand height 

explained > 80% of variance, and quadratic mean diameter was the least well-predicted with 

at most 60% of variance explained by remotely derived models (Dickson et al. 2011). 

Importantly, this report illustrates how multi-spectral and multi-temporal satellite images can 

produce reliable estimates of forest structure over time at very large scales. Given the large 

spatial and temporal extents that can be explored using remote sensing techniques, and the 

relatively high accuracy at large spatial scales, such approaches may be ideal for monitoring 

broad trends in forest structure at large scales for the ARP. Application of this and other 

approaches can be explored in future endeavors. 

Recently, code libraries developed for R statistical software have been developed to allow rapid 

analysis of satellite imagery (through Landsat earth observation program) over large spatial 

extents and large temporal domains relevant to monitoring status and trends in forest structure 

for forest planning (e.g., between 1-40 years). A recent study by Vogeler (in review) outlines 

a framework combining two such code libraries to analyze long-term changes in forest canopy 

cover across the entire state of Minnesota. The LandsatLinkr package in R (Braaten et al. 2017) 

was used to process, mask, harmonize, and composite Landsat imagery from 1973–2015. Next, 

the LandTrendr package (Kennedy et al. 2010) was used to minimize intra-annual noise to 

produce linearized trends for each 30-m pixel in the state of Minnesota to better represent forest 

dynamics and aid in the identification forest growth, decline, and disturbance events. Once all 

imagery was stacked and processed, estimates of canopy cover across the entire state were 

generated using training data created using publicly available aerial imagery. Vogeler et al. (in 

review) used this technique to produce maps of forest cover over a 43-year period with 88% 

accuracy. These maps were used to identify major changes in forest cover across the entire 

state from 1973 to 2015 (Figure 10). Using this approach, data layers estimating changes in 

canopy cover or other forest structural metrics (e.g., basal area, QMD, SDI, etc.) could be 

generated for the extent of the ARP at the large spatial (10,000 to 1,000,000 acres) and temporal 

(1-40 years) domains relevant for forest planning. In addition, landscape-scale estimates of 

forest structure can useful for modeling management impacts on other aspects of forest 

monitoring such as potential wildlife habitat (see approach in Stevens et al. 2016). 

Light detection and ranging (LIDAR) has been useful for estimating forest characteristics such 

as basal area, biomass, successional stage, etc. and may be a useful tool for monitoring status 

and trends of forest structure on the ARP. Lidar data is publicly available for large portions of 
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Larimer and Boulder counties through the Colorado Geological Survey (Figure 11) providing 

a detailed snapshot of forest structure (Figure 12), which can be analyzed to provide 

information on characteristics of forest structure for forest monitoring at fine spatial scales.  

One major reason for monitoring status and trends of forest structure is to better understand the 

distribution of successional stages across managed lands. Understanding the representation of 

forest successional stages (e.g., stand initiation, stem exclusion, old growth stages, etc.; O’Hara 

et al 1996), is an important component of understanding landscape dynamics, silvicultural 

trajectories, and wildlife habitat availability. Lidar data has been shown to be a great tool for 

estimating the distribution of successional stages across structurally diverse forests over large 

extents (e.g., ~30,000 ha). Briefly, LIDAR data can be processed to extract multiple metrics 

relating to the vertical and horizontal distribution of vegetation (e.g., maximum canopy height, 

mean canopy height, canopy cover, etc.) which can be used to predict forest structural metrics 

such as basal area, volume, QMD, SDI, among others (Falkowski et al. 2010) as well as 

structural stages across large extents. Falkowski et al. (2009) demonstrate this approach for a 

mixed conifer forest in northern Idaho. This study illustrates how LIDAR data can be combined 

with a relatively small number of forest inventory plots (i.e., ~80) in order to characterize forest 

structural stages across the landscape. This study demonstrated that forest structural stages can 

be estimated with high accuracy (90–95%; Figure 13) across very large scales. The ARP forest 

monitoring plan explicitly calls for monitoring the status and trends of forest successional 

stages, and tools such as LIDAR could play an important role in monitoring changes in forest 

 
Figure 10. Demonstration of the use of LandsatLinkr and LandTrendr algorithms used to predict changes in canopy cover 

across Minnesota from 1973–2015. Changes in canopy cover over type can be used to identify forest growth (A, B), decline, or 

canopy loss due to disturbances (C, D). From Vogeler et al. (in review). 
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structure (Table 1), and are also an important component of monitoring wildlife habitat (see 

Section 5, below). 

3.3.3 Considerations for using remotely measured metrics of forest structure  

Data from Landsat and LIDAR provide useful tools for application to ARP forest plan 

monitoring. Through the Front Range CFLRP, over 500 variable radius plots have been 

installed between the ARP and the Pike San Isabel National Forests (Barrett et al. 2017) which 

can serve as a useful database for training, calibrating, and evaluating the accuracy of remotely 

measured metrics of forest structure. In addition, other CSE and FIA plots that have been 

collected on the forest can also be included as additional data for training and evaluation of 

remotely measured metrics from Landsat and LIDAR. The release of new tools such as 

LandsatLinkr and LandTrendr (see above) offer opportunities for the development of robust 

 
Figure 11. Feb 2017 Lidar acquisition map for the state of Colorado. Colorado Geological Survey, available online: 

http://coloradogeologicalsruvey.org. 

 

 

Figure 12. Example 100 x 25 m Lidar transect from the ARP showing a large forest opening (40.675°N, 105.516°W, 

elevation approximately 7920 ft.). 

http://coloradogeologicalsruvey.org/
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and consistent monitoring of forest structure across long temporal scales and large spatial 

scales. 

The high-resolution Lidar data available in parts of the ARP (Figure 12) offers a unique 

opportunity for assessing baseline information on forest structure across a large portion of the 

ARP. However, in order to be most useful for assessing changes in forest structure over the 5- 

to 10-year time scales relevant for forest plan monitoring, additional LIDAR data can be 

periodically collected at repeated time intervals to measure changes over time. A recent 

estimate of the cost of collecting and analyzing LIDAR data and required training data 

(approximately $2.29 to $3.03 ac-1) is comparable to the cost of collecting variable radius plots 

used in stand inventories (approximately $2.46 ac-1), and LIDAR-based inventories may be 

less expensive to conduct than traditional stand examines at larger spatial scales (e.g., 70,000+ 

acres).  

 

 
Figure 13. Classification of six successional stages of forest successional stages across a mixed-conifer forest in northern 

Idaho. Figure from Falkowski et al. (2009). 
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4 FOREST WILDFIRE HAZARD AND WUI RISK 

4.1 Introduction 

The current ARP monitoring plan calls for assessing the status and trend of wildfire risk across 

the ARP with the stated goal to “reduce the number of high risk/high value, and high and 

moderate risk acres by 2,000 to 7,000 acres annually” using fuel reduction treatments (question 

10). Within the Front Range CFLRP, there are no current efforts to assess the extent to which 

restoration treatments are effecting landscape-scale changes in fire hazard, risk, or disturbance 

regimes although stand-scale assessments of these changes have been evaluated (Addington et 

al. 2014). Recent discussions on evaluating changes in fire behavior at larger scales are being 

discussed within the CFLRP. Furthermore, CFRI is engaged with several partners to develop 

tools that address changes in landscape-scale fire risk that may have applications for ARP 

Forest planning. 

There is considerable confusion about terminology used to communicate the potential for 

wildfire impacts to highly valued resources and assets (HVRAs) including “threat”, “hazard”, 

and “risk”. Here, we adopt the definitions that “[h]azard is a physical situation with the 

potential to cause damage”, whereas “risk further incorporates the likelihood that an HVRA 

will experience an event”, consistent with the wildfire risk assessment framework being used 

by the USDA Forest Service and other US land management agencies (Scott et al. 2013). 

Hazard assessment focuses on the effects of fire if it were to occur on a discrete unit of the 

landscape at a given intensity. Risk assessment extends the products of hazard assessment to 

describe the expected effects from fire on a discrete unit of the landscape over a defined time 

period, calculated as the product of hazard and wildfire likelihood (Finney 2005). 

Wildfire risk assessment is a rapidly-advancing discipline (Miller and Ager 2013), but some 

standard practices are emerging for land management applications (Scott et al. 2013). This 

section will demonstrate the application of the wildfire risk assessment framework (Scott et al. 

2013) to Wildland Urban Interface (WUI) values in the Red Feather study landscape. Although 

this assessment will focus on a single value (WUI), the framework is designed to assess wildfire 

risk to multiple resources and assets in a consistent manner through a planning process that 

involves resource specialists and line officers, and thus is especially appropriate and applicable 

to forest planning. 

Wildfire risk is defined as expected net value change (Finney 2005), and calculated as a 

function of wildfire likelihood and net value change (NVC) of a resource or asset exposed to a 

given fire intensity level (FIL). Wildfire risk assessment can therefore be compartmentalized 

into three general tasks: the first two involve using fire modeling to characterize wildfire 

likelihood and wildfire intensity, and the last involves quantifying the exposure and response 

of the highly valued resources and assets (HVRAs). There are a variety of tools that can be 

used for the fire modeling components, including FlamMap, Randig, and FSim (Finney 2006; 

Finney et al. 2011; Haas et al. 2015). HVRA exposure and response involves selecting the 

HVRAs to consider in the assessment, mapping the HVRAs, and defining response functions. 

Wildfire likelihood is commonly quantified with burn probability modeling to estimate the 

relative or calibrated probability of experiencing wildfire in each pixel of a gridded fire 

modeling fuelscape. This is accomplished by simulating the spread of many wildfires across 

the fuelscape and tallying the number of fires that intersect each pixel. Burn probability can be 
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relative (frequency of burning/total fires simulated) or calibrated depending on the fire 

modeling system used, the rigor with which simulation conditions are defined, and the use of 

post-modeling normalization techniques. It is important to understand the assumptions and 

limitations of burn probability modeling and specific burn probability modeling systems 

(Thompson and Calkin 2011; Miller and Ager 2013; Thompson et al. 2016). 

Fire behavior metrics differ in their suitability for predicting fire effects for different HVRAs, 

but using a single metric simplifies the process when assessing risks to multiple HVRAs. The 

wildfire risk assessment framework advocates the use of six flame length categories to describe 

FIL because flame lengths are interpretable by most resource professionals (Scott et al. 2013). 

FIL can be characterized for one or more static fire weather conditions using the basic fire 

behavior metrics in FlamMap, or through simulation-based methods that capture variability in 

FIL due to fire spread direction and/or weather, depending on the fire modeling system used. 

For simulation-based methods, FIL is tallied each time a fire burns across a pixel and the 

resulting product is a conditional FIL distribution for each pixel in the fuelscape.   

Resource exposure and response is the task of GIS analysts and resource specialists, who must 

decide what methods, are most appropriate for mapping the HVRAs and defining their response 

(or “susceptibility”) to wildfire by FIL. Mapping can involve a variety of methods or datasets, 

but the products are typically a set of binary or categorical rasters that are co-registered with 

the fire modeling fuelscape rasters. Data are rarely available to quantitatively describe fire 

effects by FIL, so HVRA response is often characterized by expert response functions defined 

by the resource specialists (Scott et al. 2013). Such response functions describe how each 

resource under consideration may respond (positively or negatively) to various fire intensity 

levels. The wildfire risk assessment framework has the flexibility to add another layer of input 

from line officers in the form of relative HVRA importance values that can be used to weight 

the contributions of the HVRAs to the overall risk. 

The final step in risk assessment is GIS analysis to calculate the expected NVC (eNVC) for 

each pixel in the fuelscape for the full suite of HVRAs. It is also common to produce HVRA-

specific risk rasters to help interpret which HVRAs contribute to the overall risk and to support 

HVRA tradeoff analysis. The wildfire risk assessment framework (Scott et al. 2013) has 

primarily been used to support planning (e.g., Thompson et al. 2013a), but it is also well suited 

to monitoring. We present an example of how risk assessment products can be used to monitor 

fuel treatment risk reduction to WUI in the Red Feather Lakes study landscape. 

4.2 Methods 

It would be ideal to use FSim (Finney et al. 2011) to model the conditional FIL probabilities 

for the full distribution of fire weather conditions, however, FSim has not yet been distributed 

for public use. An excellent dataset of probabilistic wildfire risk assessment components 

modeled with FSim is available (Short et al. 2016) to support risk assessment for planning 

purposes, but it does not allow the post-treatment comparison necessary for monitoring. Thus, 

basic fire behavior modeling in FlamMap is used as a placeholder to demonstrate the process 

and the relevance of the outputs for addressing the monitoring questions relevant to forest 

planning.  
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4.2.1 Wildfire likelihood 

Wildfire likelihood is described by the National FSim Burn Probability Product (Short et al. 

2016), modeled from 2012 LANDFIRE data using FSim (Finney et al. 2011). The 270-m 

resolution burn probability raster was resampled with bilinear interpolation to match the 30-m 

resolution of the fuelscape rasters used in the wildfire intensity modeling. No effect of fuel 

treatment on burn probability is modeled due to our use of pre-modeled outputs. 

4.2.2 Wildfire intensity 

We used FlamMap 5.0 (Finney 2006) to model flame lengths for a range of fuel and fire 

weather conditions. Fuel and fire weather conditions were summarized for the Red Feather 

Remote Automated Weather Station (station # 050505) using FireFamilyPlus 4.1 (Bradshaw 

and McCormick 2000) to characterize the 80th, 90th, and 97th fuel and fire weather conditions 

(Table 6) during the fire season (defined as April 1st through October 31st). Wind speed was 

converted to the 1 min average (Crosby and Chandler 1966), which is a better predictor of 

extreme fire behavior. Wind direction is quite variable when considering all wind speeds, but 

dominated by west winds for speeds ≥ 10 mph @ 20 ft. (Figure 14). We chose to use the fire 

burning uphill option with a default wind direction of 270 degrees in FlamMap to avoid 

underestimating the fire hazard on slopes sheltered from west winds. 

4.2.3 Fuel treatment 

Fuel treatment effects can be incorporated by simulating fuel reduction treatments in the 

baseline fuels data for the fire models. In this case, we do not examine the effect of a fuel 

treatment on burn probability because we acquired our burn probability estimates from another 

project (Short et al. 2016). Researchers have cautioned the use of fuel treatment for fire spread 

objectives (Reinhardt et al. 2008) and study of a similar landscape in west central Oregon 

estimated that a large fuel treatment program would reduce both fire size and annual area 

 

Table 6. Fuel and weather parameters used for the fire behavior modeling in FlamMap, characterized using 

FireFamilyPlus for the Red Feather RAWS. 

Percentile Dead 1-hr 

moisture 

content 

Dead 10-hr 

moisture 

content 

Dead 100-hr 

moisture 

content 

Live 

Herbaceous 

moisture 

content 

Live Woody 

moisture 

content 

Wind 

speed 

(mph @ 20 

ft) 

Converted 1 

min wind 

speed (mph 

@ 20 ft)  

80th 4 5 9 25 60 13 18 

90th 3 4 8 7 60 16 21 

97th 2 3 7 4 60 22 27 

 

 

Figure 14. Wind direction distributions for the Red Feather RAWS station, considering all wind speeds (LEFT) and only 

wind speeds ≥ 10 mph @ 20 ft (RIGHT). 
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burned less than a 10% (Thompson et al. 2013b). Fire modeling systems in the US use a set of 

co-registered rasters to describe surface and canopy fuels and topography. This data is 

commonly acquired from the LANDFIRE program (https://www.landfire.gov/) and then 

critiqued and updated for local conditions by a GIS analyst (Stratton 2009). We used the 2010 

LANDFIRE release to characterize baseline conditions for assessing the effects of fuel 

treatments implemented between 2010 and 2014. The only adjustments we made to the baseline 

data were for lodgepole pine by lowering the canopy base height 20% and changing the fire 

behavior fuel model from TL3 to TL5 (Scott and Burgan 2005) to better reflect crown fire 

potential. 

We simulated three different fuel treatment types – mechanical only, mechanical followed by 

prescribed fire, and prescribed fire only – based on effect sizes reported in the literature 

(Stephens and Moghaddas 2005; Stephens et al. 2009; Fulé et al. 2012; Ziegler et al. 2017). 

The fuel treatments are applied as adjustment factors (Table 7) to the LANDFIRE canopy 

variables. These generic fuel treatments were selected to illustrate the approach, but a more 

realistic workflow for assessment would include the measured effect sizes for each treatment 

unit from stand-scale estimates of treatment outcomes (see section 3 above)  

Mechanical only treatments tend increase surface fuels, mechanical followed by prescribed fire 

treatments tend to keep fuel loads about the same, and prescribed fire only treatments decrease 

surface fuels (Stephens et al. 2009; Fulé et al. 2012). We make the conservative assumption 

that mechanical only treatments will increase the FBFM to higher rates of spread and flame 

lengths, unless the current FBFM is already the highest in the fuel model type (e.g. TL9 has 

the highest rates of spread and flame lengths in the TL fuel type). We assume that FBFM does 

not change with mechanical followed by prescribed fire because the surface fuel additions from 

the mechanical treatment are balanced with surface fuel reductions from the prescribed fire. 

We assume that prescribed fire will drop the FBFM down a category to lower rates of spread 

and flame lengths, unless the current FBFM is already the lowest in the fuel model type (e.g. 

TL1 has the lowest rates of spread and flame lengths in the TL fuel type). Only timber 

understory, timber litter, and slash-blowdown fuel types are assumed to have sufficient canopy 

fuels that can be transferred to the surface during implementation. 

4.2.4 HVRA exposure and susceptibility 

We used a high-resolution spatial database of structure locations (Caggiano et al. 2016) to 

represent WUI in this analysis. Spatial definitions of WUI have been a source of much 

controversy (i.e., Schoennagel et al. 2009), so we hope to emphasize that our use of this dataset 

was based on convenience and is not meant to replace the various spatial WUI layers used by 

the Forest for planning. The WUI structure database (Caggiano et al. 2016) consists of point 

Table 7. Treatment effects are applied to the modified LANDFIRE data as adjustment factors, e.g. an adjustment factor 

of 0.6 for mechanical only treatment on canopy bulk density (CBD) equates to a 40% reduction. 

Canopy Parameter Mechanical Only Mech + Rx Fire Rx Fire Only 

CBD 0.6 0.5 0.92 

CBH 1.2 1.2 1.09 

CC 0.7 0.75 0.95 

CH 1.2 1.2 1.13 
 

https://www.landfire.gov/
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vector data of structure locations mapped from high-resolution aerial imagery using object-

based detection methods. The WUI structure database contains 2,510 mapped structures within 

the Red Feather study landscape. We analyze three different spatial representations of this data: 

1) a restricted definition of WUI, assigning pixel membership only to pixels that contain a WUI 

structure; 2) defining WUI as any pixel within a 0.5 km buffer around the structures; and 3) 

defining WUI as any pixel within a 1 km buffer around the structures. 

The wildfire risk assessment framework can be used to assess a range of HVRA responses to 

wildfire, including positive effects when wildfire may restore or maintain fire adapted 

ecosystems (Scott et al. 2013). However, response functions for WUI are generally negative 

across the full range of FIL. We follow the WUI response function defined in Thompson et al. 

(2013a) for a wildfire risk assessment of the Lewis and Clark National Forest in Montana 

(Table 8). WUI losses are expected to increase steeply between flame lengths of 2 to 8 feet 

(Table 8). 

  

 

Figure 15. Pilot study landscape, consisting of three HUC12 watersheds in the Red Feather Lakes area. The bright green 

polygon boundaries delineate the 14 thinning and hazardous fuel reduction treatments implemented between 2010 and 

2014. 

 

 

Table 8. WUI response function from Thompson et al. (2013) for the Lewis and Clark National Forest in Montana, 

including flame length ranges that define the FIL categories. Negative values indicate loss, whereas positive values 

indicate benefit from fire. 

FIL 1 2 3 4 5 6 

Flame length (ft) < 2 2-4 4-6 6-8 8-12 > 12 

Response -10 -30 -60 -80 -100 -100 
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4.3 Results 

Wildfire risk to WUI was assessed for baseline (2010) and treated conditions (2014) for a study 

landscape near Red Feather Lakes, defined by the extent of three HUC12 watersheds (Elkhorn 

Creek, South Fork Lone Pine Creek, and North Fork Lone Pine Creek) covering approximately 

64,000 acres (Figure 15). The effects of 14 pre-commercial thinning and thinning for hazardous 

fuels reduction treatments (Figure 15) totaling 833 acres were the target of the assessment, but 

these represent only a subset of fuel treatment activities completed in the study landscape.  

4.3.1 Wildfire likelihood 

Burn probability modeling results from Short et al. (2016) are presented for the study landscape 

in Figure 16. Mean annual burn probability for the study site ranges from zero for waterbodies 

to a high of 0.009, with a mean of 0.004. It may be surprising that the highest probability (most 

fire-prone pixel on the landscape) has an estimated annual burn probability of less than 1%, 

but it is important to recognize that there are many pixels in the landscape, so the annual 

probability of experiencing a fire in the study site is not the same as the maximum pixel value. 

The expected area burned is a more intuitive metric, which is calculated as the sum product of 

burn probability and pixel area for a zone of interest. The expected area burned for the study 

landscape is 274 ac yr-1. 

When estimating fuel treatment effects on risk, it is important to account for fuel treatment 

longevity (Rhodes and Baker 2008). However, because the response functions used here are 

based on relative values, there is no benefit to making this correction. If a similar framework 

were adopted for monitoring, there should be clearly defined criteria for the fuel treatments 

included as effective treatments (e.g. based on age of treatment or field monitoring of fuel 

conditions). 

 
Figure 16. Mean annual burn probability from Short et al. 2016. Treatment boundaries are shown in bright green. Streams 

and waterbodies are shown in dark blue for reference. 
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4.3.2 Wildfire intensity 

Modeled fuel treatment effects on fire intensity vary spatially depending on fuel treatment type, 

starting fuel conditions, topography, and fuel and fire weather conditions (Figure 17, Figure 

18, and Figure 19). The simulated mechanical only treatment type includes the commonly 

observed increase in surface fuels (Stephens et al. 2009; Fulé et al. 2012), so flame lengths are 

predicted to increase with this treatment type under all percentile fuel and fire weather 

conditions, except in that case that treatment changes crown fire activity from crown to surface 

fire. The simulated mechanical followed by prescribed fire treatment leaves the fire behavior 

fuel model (FBFM; Scott and Burgan 2005) unchanged to reflect that surface fuel additions 

from the mechanical work are removed by prescribed fire, resulting in greater effects than the 

mechanical only treatment. The prescribed fire only treatment is simulated by minor changes 

in canopy variables and decreased surface fuel loads, represented here as a shift to a less active 

FBFM. The modeled prescribed fire only treatment therefore achieves the greatest fire intensity 

reduction of the three modeled fuel reduction treatments. These stylized fuel treatments are 

presented as examples to illustrate the process. These stylized treatment outcomes were 

developed based on existing literature and with input from B. Karchut (ARP, Fire and Aviation 

Staff Officer) and J. White (CL District, AFMO, Fuels). Ideally, these effects would be 

described by the fuels specialist for each treatment unit, based on field observations. Modeled 

 
Figure 17. Fire intensity level (FIL) modeled using FlamMap for 80th percentile fire season conditions for untreated and 

treated scenarios. Note that no feasibility constraints were considered for the treated scenarios. 
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fuel treatments are most effective under less extreme fuel and fire weather conditions (Figure 

17, Figure 18, and Figure 19). 

4.3.3 Wildfire risk assessment 

WUI extent is 479; 23,156; or 37,769 acres, respectively, depending on whether the restrictive 

definition, or 0.5 and 1 km buffer definitions are used (Figure 20). Only 2.2 acres of the 14 

treatment units fall within WUI if the restrictive definition of WUI is adopted. Expanding the 

WUI extent increases the treated area in WUI to 338.5 and 664.1 acres. 

WUI risk increases along a gradient from west to east and high to low elevation (Figure 20), 

driven by increasing burn probability (Figure 16) and fire intensity (Figure 17, Figure 18, and 

Figure 19). Much of the area at highest risk falls outside the National Forest ownership in 

ranches and exurban developments along Red Feather Lakes and Manhattan Roads in the 

eastern half of the study landscape. WUI risk in Beaver Meadows and Red Feather Lakes is 

low and moderate in comparison, primarily due to the lower likelihood of experiencing fire 

(Figure 16).  

The current monitoring plan objective for wildfire risk is to “[r]educe the number of high 

risk/high value, and high and moderate risk acres by 2,000 to 7,000 acres annually” presents 

 
Figure 18. Fire intensity level (FIL) modeled using FlamMap for 90th percentile fire season conditions for untreated and 

treated scenarios. Note that no feasibility constraints were considered for the treated scenarios. 
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the total WUI area and area treated in each of seven risk categories, arbitrarily defined as equal 

intervals to divide the range of pixel eNVC values (same categories used in Figure 20). The 

area in each risk category changes across spatial definitions of WUI and fuel and fire weather 

conditions, but the most treated area generally falls in the lowest and middle risk classes (Table 

10). It should be noted that this risk scale is relative and arbitrary. Since the majority of high-

risk area in the study landscape is on private lands, the scale does not allow the National Forest 

much opportunity to address the highest risk areas; this may be an important point to address 

for both planning and monitoring. 

 
Figure 19. Fire intensity level (FIL) modeled using FlamMap for 97th percentile fire season conditions for untreated and 

treated scenarios. Note that no feasibility constraints were considered for the treated scenarios. 
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Figure 20. Baseline (untreated) WUI risk based on three different spatial definitions of the WUI and three different 

percentile fuel and fire weather conditions. Treatment boundaries are shown in bright green. 
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The total effects of fuel treatments can be quantified by comparing risk for untreated and treated 

landscapes, using the fire intensity outputs with the simulated fuel reduction treatments (Table 

9). The 14 pre-commercial thinning and thinning for hazardous fuels reduction treatments 

examined here (Figure 16) are best described as mechanical only treatments. Consistent with 

the earlier noted trend in FIL, this method estimates that losses will increase (more negative 

eNVC) by applying mechanical only treatment (Table 9). Results are also presented for the 

same area treated with mechanical followed by prescribed fire and prescribed fire only 

treatments (Table 9). The largest and most-consistently positive effects (reduced losses) are 

from the prescribed fire only treatment. The spatial definition of WUI, as well as the fuel and 

fire weather conditions, control the magnitude of total risk, which highlights the importance of 

consistent HVRA mapping and fire modeling conditions. The more specifically risk can be 

defined, the more useful risk assessment products will be for planning and monitoring. 

4.4 Discussion 

Wildfire risk assessment use for planning is growing in popularity, but there are also clear 

connections to monitoring. The current acres-based monitoring objective only requires a 

baseline risk assessment to spatially define the risk categories (Table 10). Implicit in the stated 

objective is the assumption that tracking the number of acres treated is sufficient to describe 

the benefit of treatment, i.e. the treated acres move out of the higher-risk categories. Although 

Table 10: Distributions of WUI acres by risk class for three different spatial definitions of the WUI and three fuel and 

weather conditions. The number of WUI acres treated (Ac Treated) and percent of WUI acres treated (% Treated) by risk 

class are also presented for the 14 thinning and hazardous fuel reduction treatments. 

 

Restricted WUI 0.5 km WUI Buffer 1 km WUI Buffer

Total ac Ac Treated % Treated Total ac Ac Treated % Treated Total ac Ac Treated % Treated

Full WUI 479.0 2.2 0.5 23,155.9 338.5 1.5 37,769.1 664.1 1.8

80th Percentile Fuel and Fire Weather Conditions

-0.85 to -0.73 5.3 0.0 0.0 770.6 0.0 0.0 1,674.0 0.0 0.0

-0.73 to -0.61 37.4 0.0 0.0 4,165.9 5.3 0.1 7,468.9 8.2 0.1

-0.61 to -0.49 88.5 0.4 0.5 3,217.4 105.2 3.3 4,962.1 165.9 3.3

-0.49 to -0.36 74.7 0.0 0.0 2,538.9 75.2 3.0 3,784.7 129.9 3.4

-0.36 to -0.24 68.1 0.7 1.0 2,494.2 24.0 1.0 3,686.0 74.1 2.0

-0.24 to -0.12 82.5 0.0 0.0 3,391.7 16.9 0.5 4,985.6 33.8 0.7

-0.12 to 0.00 122.5 1.1 0.9 6,577.3 111.9 1.7 11,234.9 252.2 2.2

90th Percentile Fuel and Fire Weather Conditions

-0.85 to -0.73 5.6 0.0 0.0 830.2 0.0 0.0 1,797.4 0.0 0.0

-0.73 to -0.61 40.9 0.0 0.0 4,540.4 5.3 0.1 8,142.1 8.2 0.1

-0.61 to -0.49 94.1 0.4 0.5 3,619.9 108.8 3.0 5,550.7 172.6 3.1

-0.49 to -0.36 81.0 0.0 0.0 3,063.3 80.5 2.6 4,600.0 148.8 3.2

-0.36 to -0.24 85.2 0.7 0.8 3,030.8 24.9 0.8 4,447.7 89.0 2.0

-0.24 to -0.12 95.4 0.4 0.5 3,976.9 46.9 1.2 5,937.7 81.8 1.4

-0.12 to 0.00 76.9 0.7 0.9 4,094.5 72.1 1.8 7,320.6 163.7 2.2

97th Percentile Fuel and Fire Weather Conditions

-0.85 to -0.73 6.7 0.0 0.0 945.4 0.0 0.0 2,072.3 0.0 0.0

-0.73 to -0.61 57.4 0.0 0.0 5,641.0 5.3 0.1 9,838.7 8.9 0.1

-0.61 to -0.49 111.0 0.4 0.4 4,958.1 134.3 2.7 7,549.2 210.2 2.8

-0.49 to -0.36 90.5 0.4 0.5 2,831.3 93.9 3.3 4,294.2 188.6 4.4

-0.36 to -0.24 82.1 0.7 0.8 3,022.8 23.6 0.8 4,499.3 95.2 2.1

-0.24 to -0.12 75.8 0.0 0.0 3,021.7 27.6 0.9 4,614.7 57.4 1.2

-0.12 to 0.00 55.6 0.7 1.2 2,735.7 53.8 2.0 4,927.8 103.9 2.1

Table 9. Accounting of total risk for three different spatial definitions of the WUI and three fuel and weather 

conditions. Results are presented for the untreated (baseline) study landscape and the treated landscape with the 14 

thinning and thinning for hazardous fuel treatment units (Figure 15) represented by the three stylized fuel reduction 

treatments described here. Risk is presented as expected Net Value Change. Consistent with the response function 

(Table 8), negative values represent loss, so risk reduction is achieved by moving risk metrics towards zero. 

  Expected Net Value Change (Risk) 

            

  
Restricted 

WUI   

0.5 km WUI 

Buffer   

1 km WUI 

Buffer 

            

80th Percentile Fuel and Fire Weather Conditions     

Untreated -670.8   -35,217.9   -58,670.6 

Treated           

Mechanical Only -671.8   -35,308.4   -58,867.8 

Mechanical & Rx Fire -670.9   -35,222.8   -58,677.6 

Rx Fire Only -669.6   -35,016.4   -58,357.1 

            

90th Percentile Fuel and Fire Weather Conditions     

Untreated -735.2   -39,245.4   -65,232.5 

Treated           

Mechanical Only -736.1   -39,325.8   -65,411.0 

Mechanical & Rx Fire -735.2   -39,237.8   -65,195.9 

Rx Fire Only -734.3   -39,063.8   -64,934.1 

            

97th Percentile Fuel and Fire Weather Conditions     

Untreated -824.6   -44,809.2   -74,243.0 

Treated           

Mechanical Only -825.0   -44,830.3   -74,292.1 

Mechanical & Rx Fire -824.6   -44,803.0   -74,224.8 

Rx Fire Only -824.6   -44,721.5   -74,093.7 
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there are limitations with the fuel treatment simulation and fire intensity modeling methods we 

present here, it demonstrates a potential framework to measure risk reduction by accounting 

for treatment effects on fire intensity and the underlying wildfire likelihood. Treatment effects 

on fire intensity are highly variable depending on the starting forest conditions, the type and 

intensity of fuel treatment, the slash disposal methods, and the landscape context of the 

treatment. It may be overly optimistic to assume that every action categorized as a hazardous 

fuel treatment accomplishes the same effects (Figure 17, Figure 18, and Figure 19). 

In the preceding analyses, we ignored fuel treatment effects on wildfire likelihood, mainly for 

logistical reasons, but researchers have strongly cautioned the use of fuel treatment for fire 

spread objectives (Reinhardt et al. 2008). It is possible that some fuel reduction treatments may 

actually accelerate fire ROS compared to pre-treatment, particularly for forest restoration 

treatments that promote understory development in what was previously a moderate-load 

timber-litter fuel type. A modeling study for a similar landscape in west central Oregon 

estimated that a large fuel treatment program would reduce both fire size and annual area 

burned less than 10%, and their assumptions were that fuel models transitioned to lower loads, 

lower ROS, and lower FL following treatment (Thompson et al. 2013a). The idea that fuel 

treatments will lower burn probability is often connected to the concept that fuel treatments 

will increase firefighter effectiveness. Of the US spatial fire modeling systems used for burn 

probability modeling, only FSim (Finney et al. 2011) simulates fire containment (Finney et al. 

2009), so it would be the preferred tool to explore this question.  

The extent of WUI (Figure 20) has significant implications for addressing the monitoring 

objective. With an inclusive definition of WUI (≥ 1 km of WUI HVRAs), most fuel treatment 

work done for any reason will count towards the WUI treatment objective. If judged by other 

metrics, such as the proportion of WUI treated, an inclusive definition of WUI may perform 

poorly, because the denominator will be very large. The choice of how to define WUI should 

be carefully considered, given recent critique of fuel treatment locations aimed at reducing 

wildfire risk to the WUI (Schoennagel et al. 2009). Although most home ignition research 

suggests fuels in the home ignition zone and building materials are more important than offsite 

wildland fuel treatments (Cohen 1995, 2000; Schoennagel et al. 2009), there is some evidence 

that wildland fuels up to 1 km from homes can contribute to home loss (Price and Bradstock 

2013).  

4.4.1 Limitations 

FSim is ideal for modeling probabilistic wildfire likelihood and intensity components for risk 

assessment. We utilized a burn probability data product modeled with FSim (Short et al. 2016) 

to describe baseline conditions, but since we do not have access to the model, we could not 

produce an equivalent product for the post-treatment landscape. There are other tools for burn 

probability modeling, but none contain the same fire containment algorithm (Finney et al. 

2009). FSim also captures a more realistic distribution of FIL by simulating fires over a wider 

range of fuel and weather conditions, generally leading to lower FIL than predicted for problem 

fire scenarios modeled using the basic fire behavior module in FlamMap (Thompson et al. 

2016).  

There is high variability in surface fuel characteristics following mechanical only treatment, 

but the trends point to increased surface fuel loadings and increased surface fire behavior 

(Stephens and Moghaddas 2005; Stephens et al. 2009; Fulé et al. 2012). However, our choice 
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to simulate these effects by changing the categorical FBFM may overestimate the effects if the 

magnitudes of difference in fire behavior between FBFM are too large. Although several 

studies have confirmed the general trends, there are no commonly accepted methods for 

simulating increased surface fuel loads, especially for models that use categorical FBFMs. This 

has significant consequences for the estimated effects of the fuel reduction treatments, 

especially the mechanical only treatment type, which as described, increases risk.  

We used a readily-accessible dataset (Caggiano et al. 2016) to define WUI for this analysis, 

that may not match WUI data products used by the Forest. To be consistent with the wildfire 

risk assessment framework (Scott et al. 2013) and the risk assessment we borrowed the WUI 

response function from (Thompson et al. 2013a), we mapped only the presence and absence of 

WUI. This is appropriate for large landscape- to regional-scales, but for a smaller extents and 

more focused analysis, it may be desirable to consider the density and/or values of the homes 

to more precisely define risk. 

Despite these limitations, the framework and datasets outlined above, provide a robust 

framework for analyzing the effects of forest management practices on changes to WUI risk. 

Such analyses can be used to better understand the status and distribution of WUI risk across 

the ARP for planning purposes. Combined with a treatment simulation process similar to that 

above, these analyses can serve a critical function of evaluating landscape scale effects of 

management practices on WUI risk at the ARP.  
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5 PROTECTION OF SOIL AND WATER RESOURCES 

5.1 Introduction 

Within the Front Range CFLRP, there are no active efforts to assess the extent to which 

restoration treatments are effecting landscape-scale changes to soil and water resources, 

although some landscape-scale approaches are currently being considered. CFRI is engaged 

with several partners to develop tools that address changes in landscape-scale fire risk that may 

have applications for ARP Forest planning. Here, we demonstrate a linked model approach to 

monitor forest management practices on watershed health regarding erosion and runoff. The 

linked model approach combines wildfire, erosion, and sediment transport models to estimate 

the hazard and risk reduction of wildfire-related erosion and sediment delivery to streams. We 

use the definition of wildfire risk as outlined in Scott et al. (2013) and in section 4.1 above. 

The linked model approach uses fire models to describe wildfire likelihood and behavior, and 

erosion and sediment transport models to describe resource exposure and response at two 

different scales (Figure 21). The framework is flexible, allowing for configurations that could 

support assessment, planning, or both. The effects of forest management actions are 

incorporated by simulating fuel reduction treatments on the baseline fuels data that go into the 

fire behavior model, so that treatment effects can be quantified as the difference between 

untreated and treated landscapes.  

5.2 Methods 

5.2.1 Wildfire likelihood 

Most wildfire risk assessments use burn probability modeling to estimate the likelihood of 

experiencing fire across a landscape based on the current configuration of fuels and some 

representation of ignition likelihood and fire weather conditions (Scott et al. 2013). There are 

 
Figure 21. Model framework for assessing wildfire-related erosion hazard, hazard of sediment delivery to streams, and 

risk of sediment delivery to streams.  
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many assumptions that go into the burn probability modeling process, so rather than completing 

our own custom modeling, we utilized the National FSim Burn Probability Product (Short et 

al. 2016), modeled from 2012 LANDFIRE data using the Large Fire Simulator (FSim; Finney 

et al. 2011). 

5.2.2 Fire behavior 

We used FlamMap 5.0 (Finney 2006) to model crown fire activity (Scott and Reinhardt 2001) 

as an index of fire severity, similar to studies of wildfire-debris flow risk (Tillery et al. 2014; 

Thompson et al. 2016; Tillery and Haas 2016), by mapping surface, passive crown, and active 

crown fire to low, moderate, and high severity. This simplifying assumption is reasonable, 

given that most wildfire effects on erosion are only described at the resolution of low, moderate, 

and high severity, but there is also considerable opportunity to improve this part of the model 

framework in the future by using a continuous measure of fire severity. 

Most area burned during recent decades in the Colorado Front Range is the product of large 

fire events that occur during extreme fire weather conditions, so we modeled crown fire activity 

for 97th percentile fire weather conditions from the Red Feather Remote Automated Weather 

Station (station # 050505). The fuel and fire weather conditions were summarized using 

FireFamilyPlus 4.1 (Bradshaw and McCormick 2000) to characterize the 97th conditions 

(Table 11) during the fire season (defined as April 1st through October 31st). Wind speed was 

converted to the 1 min average (Crosby and Chandler 1966), which is a better predictor of 

extreme fire behavior. Wind direction is quite variable when considering all wind speeds, but 

dominated by west winds for speeds ≥ 10 mph at 20 ft. (Figure 22). We chose to use the fire 

burning uphill option with a default wind direction of 270 degrees in FlamMap to avoid 

underestimating the fire hazard on slopes sheltered from west winds. 

Table 11. Fuel and weather parameters used for the fire behavior modeling in FlamMap, characterized using FireFamilyPlus for 

the Red Feather RAWS for the 97th percentile fire season conditions. 

Dead 1-hr 

moisture 

content 

Dead 10-hr 

moisture 

content 

Dead 100-hr 

moisture 

content 

Live 

Herbaceous 

moisture 

content 

Live 

Woody 

moisture 

content 

Wind 

speed (mph 

@ 20 ft) 

Converted 1 

min wind 

speed (mph 

@ 20 ft)  

2 3 7 4 60 22 27 

 

 

Figure 22. Wind direction distributions for the Red Feather RAWS station, considering all wind speeds (LEFT) and only wind 

speeds ≥ 10 mph @ 20 ft (RIGHT). 
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5.2.3 Fuel treatments 

See section 4.2.3 above for a description of fuel treatments simulation details. We use the same 

methods here to simulate fuel reduction treatments using in the baseline fuels data acquired 

from the LANDFIRE program (http://www.landfire.gov). These data were critiqued and for 

local conditions (Stratton 2009). We simulated three different fuel treatment types – 

mechanical only, mechanical followed by prescribed fire, and prescribed fire only – based on 

effect sizes reported in the literature (Stephens and Moghaddas 2005; Fulé et al. 2012; Ziegler 

et al. 2017). See section 4.2.3 above for full description. 

5.2.4 Resource exposure and response 

Watershed response is modeled in two ways: 1) local soil loss rate (erosion) for each 30 m 

pixel in the landscape using a GIS implementation of the Revised Universal Soil Loss Equation 

(RUSLE; Renard et al. 1997) and 2) sediment delivered to the channel network from each 30 

m pixel using a hillslope sediment transport model (Wagenbrenner and Robichaud 2014). 

5.2.5 Erosion 

The RUSLE (Renard et al. 1997) consists of five subfactors that are multiplied together to 

calculate the predicted annual soil loss (A). The subfactors are rainfall-runoff erosivity (R), soil 

erodibility (K), length-slope (LS), cover-management (C), and support practices (P). Annual 

soil loss is calculated by multiplying the five subfactors, as follows: 

A = R * K * LS * C * P 

where 

A = estimated average soil loss in tons acre-1 year-1 

R = rainfall-runoff erosivity factor 

K = soil erodibility factor 

LS = length-slope factor 

C = cover-management factor 

P = support practice factor (ignored) 

Support practices generally refer to agricultural interventions such as tilling and buffer strips. 

In forestlands, there are limited to no management interventions of this type, so no support 

practice factor was modeled. 

We followed the GIS-based implementation of RUSLE described in Theobald et al. (2010) 

with minor modifications. Similar approaches have been used for post-fire hazard assessment 

of the High Park and West Fork Complex Fires in Colorado (Yochum and Norman 2015) and 

for forecasting erosion under different climate change scenarios in the Southern Rockies 

Ecoregion (Litschert et al. 2014). For a complete review of the methods see Theobald et al. 

(2010). 

 R Factor – The rainfall-runoff erosivity factor (R) is an annual metric of rainfall that 

integrates total rainfall energy and maximum 30 min intensity. Greater than 95% of annual 

sediment yield is mobilized by summer rainstorms in the period from June through October 

http://www.landfire.gov/
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(Larsen and MacDonald 2007), so we summed the 30 year normal monthly precipitation 

data from PRISM (http://www.prism.oregonstate.edu/) from June through October and used 

the Renard and Freimund (1994) equations to calculate erosivity. PRISM data has a 

resolution of 800 m, so the final product was resampled with bilinear interpolation to match 

the 30 m resolution of other data layers. 

 K Factor – The soil erodibility factor (K) is the rate of soil loss per rainfall erosion index 

unit (Renard et al. 1997) and is generally determined empirically, or sometimes using 

equations based on soil texture. The K factor is an attribute recorded in the national 

cooperative soil survey data maintained and distributed by USDA Natural Resources 

Conservation Service (NRCS). Soils data for the project area includes coverage from the 

higher-resolution Soil Survey Geographic Database (SSURGO) and the coarser-resolution 

State Soils Geographic Database (STATSGO). We used the whole soil K factor (kwfact) 

which is adjusted for the effect of rock fragments and attributed at the horizon level. In both 

SSURGO and STATSGO, map units are made up of multiple components with specified 

percent cover and components are made up of multiple horizons with specified depth. We 

followed the methods of Yochum and Norman (2015) to calculate the K factor for each 

component as the depth-weighted mean for each horizon in the top 15 cm of the soil profile 

and for each map unit as the area-weighted mean of all non-water and non-rock component 

types. SSURGO data was used preferentially due to its higher resolution, but it was gap-

filled as needed with STATSGO for map units missing K factor data. The complete project 

coverage of SSURGO and STATSGO map unit polygons were converted to a 30 m raster 

to match the resolution of the other data layers.  

 LS Factor  – The length-slope factor (LS) is the product of the slope length factor (L) and 

the slope steepness factor (S), which together represent the influence of topography on 

erosion and are discussed jointly here because they are calculated in a single process from a 

30 m DEM. The original intent for the RUSLE was for these factors to be measured in the 

field, but numerous GIS adaptations of USLE/RUSLE can be used to approximate LS across 

large landscapes. We follow the methods of Theobald et al. (2010), Litschert et al. (2014), 

and Yochum and Norman (2015) to calculate LS with two modifications: 1) a flow 

accumulation threshold was applied to approximate the hillslope length limit (~1,000 ft), 

and 2) we constrained the final LS factor values to the maximum from Renard et al. (1997). 

The LS factor output was reprojected and resampled to co-register with other data layers. 

 C Factor – The cover-management factor (C) was mapped to the existing vegetation type 

(EVT) from LANDFIRE using values assembled in Yochum and Norman (2015) and 

Litschert et al. (2014). The barren EVT, which has a very high C factor value, is assigned to 

some alpine areas that have low rates of erosion (S. Kampf, personal communication), so 

barren areas ≥ 2900 m were reassigned a C factor of zero. 

5.2.6 Integrating fire behavior results 

The primary drivers of post-wildfire erosion (ignoring rainfall characteristics) are reduced 

vegetation cover and changes to the physical and chemical characteristics of soils (Neary et al. 

2005; Shakesby and Doerr 2006). Post-fire erosion response can be modeled by mapping fire 

severity to changes in the RUSLE cover factor (C) and soil erodibility factor (K) using local 

data (Larsen and MacDonald 2007; Schmeer 2014; Yochum and Norman 2015).  

For forested areas (> 10% canopy cover in LANDFIRE), we assign the mean C factor values 

for the first year after burning from Larsen and MacDonald (2007) using a remap table (Table 

http://www.prism.oregonstate.edu/
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12). For areas with < 10% canopy cover (non-forest) we applied a set of effect sizes 

(multiplication factors) to estimate post-fire C factor (Table 12). These effect sizes are 

conservative compared to the ~ 100x increase in cover factor for forested areas burned at high 

severity. Effect sizes are used due to the diversity of non-forest vegetation types and the limited 

post-fire erosion work in these systems (see Pierson et al. 2016 for discussion). 

There are some slight mismatches between EVT forest classes and the 10% canopy cover 

threshold, so any "improved" pixels were replaced with their original values. We expect that 

these very low-density forest vegetation types would be minimally impacted by fire and they 

also represent a very small fraction of the landscape. 

Fire effects on soils are diverse, but generally lead to decreased infiltration and cohesion, from 

a range of processes including deposition of hydrophobic compounds, soil sealing, and 

consumption of organic material (Neary et al. 2005; Shakesby and Doerr 2006). Quantitative 

measure of post-fire K factors is lacking, but Larsen and MacDonald (2007) back-calculate an 

effect size of 2.5 for high severity. Given the assumptions of this methodology, we adopted the 

more conservative values (Table 12) used in Schmeer (2014). 

Other RULSE factors (rainfall erosivity and length-slope) are unchanged by fire.  

5.2.7 Sediment transport 

The RUSLE soil loss rates can be converted to the mass of sediment delivered from each pixel 

to the channel network using an empirical model of post-fire sediment delivery ratio (SDR) 

from watersheds burned in the western US, including Colorado (Wagenbrenner and Robichaud 

2014). SDR is modeled for each pixel using the annual length ratio equation (Wagenbrenner 

and Robichaud 2014), where the flow path length across the pixel is treated as the small 

catchment length and the flow path length to the nearest channel is treated as the larger 

catchment length. The channel network was defined as the medium resolution National 

Hydrography Dataset flowlines (NHDPlus), plus an extension using the mean contributing area 

for channel head formation in the Front Range from Henkle et al. (2011) as a flow accumulation 

threshold. SDR in this model can vary between 0 and 1 and can be used as a multiplier to scale 

the gross erosion at the 30 m pixel-scale to the sediment delivered to the stream. 

5.3 Results 

Baseline (2010) hazard and risk of erosion and sediment delivery to streams were assessed for 

three HUC12 watersheds in the Red Feather Lakes area (Elkhorn Creek, South Fork Lone Pine 

Creek, and North Fork Lone Pine Creek) covering approximately 64,000 acres (Figure 24). 

Table 12. Mean cover factor values from Larsen and MacDonald (2007) calculated from nine wildfires in the Colorado 

Front Range. C factor values are applied as a remap to forests (> 10% canopy cover in LANDFIRE). Cover factor effect 

sizes applied as multiplication factors for non-forest vegetation types (≤ 10% canopy cover). Soil erodibility factor 

effect sizes applied as multiplication factors, from Schmeer 2014. 

CFA Value Fire Severity C Factor 

Remap for 

forest 

C Factor 

Effect for non-

forest 

K Factor 

Effect 

1 (surface) Low 0.01 1.2 1.5 

2 (passive) Moderate 0.05 1.5 1.75 

3 (active) High 0.20 2.0 2.0 
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The effects of 14 pre-commercial thinning and thinning for hazardous fuels reduction 

treatments (Figure 24) totaling 833 acres were assessed by comparing hazard and risk of 

erosion and sediment delivery for treated and untreated landscapes. 

5.3.1 Wildfire likelihood 

Burn probability modeling results from Short et al. (2016) are presented for the study site in 

Figure 23. Mean annual burn probability for the study site ranges from zero for waterbodies to 

a high of 0.009, with a mean of 0.004. It may be surprising that the highest probability (most 

fire-prone pixel on the landscape) has an estimated annual burn probability of less than 1%, 

 

Figure 24. Pilot study landscape, consisting of three HUC12 watersheds in the Red Feather Lakes area. The bright green 

polygon boundaries delineate the 14 thinning and hazardous fuel reduction treatments implemented between 2010 and 

2014. 

 

Figure 23. Mean annual burn probability from Short et al. 2016. Treatment boundaries are shown in bright green. The 

channel network (dark blue) is an extension (Henkle et al. 2011) of the NHDPlus medium resolution flowlines.  
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but it is important to recognize that there are many pixels in the landscape, so the annual 

probability of experiencing a fire in the study site is not the same as the maximum pixel value. 

The expected area burned is sometimes a more intuitive metric, which is calculated as the sum 

product of burn probability and pixel area for a zone of interest. The expected area burned for 

the study landscape is 274 acre yr-1. Unpublished analysis from CFRI confirms that the Short 

et al. (2016) burn probability estimates are very close to the Front Range-wide mean annual 

burn probability calculated from MTBS data from the modern era (1984-2015). 

When estimating risk reduction from fuel treatment, it is important to correct annual burn 

probability to burn probability over the effective lifespan of the fuel treatment (Rhodes and 

Baker 2008). For risk assessment calculations, we assume fuel treatments have constant 

effectiveness for 25 years, and correct to the probability of experiencing fire over n years, q, as 

a function of annual burn probability p using equation 1. 

𝑞 = 1 − (1 − 𝑝)𝑛   Eqn. 1 

5.3.2 Fire behavior 

Modeled fuel treatment effects on fire behavior vary spatially depending on fuel treatment type, 

starting fuel conditions, and topography (

Figure 25. Crown fire activity output from FlamMap for 97th percentile fire weather conditions for the baseline (UPPER 

LEFT), mechanical only treatment (UPPER RIGHT), mechanical and Rx fire treatment (LOWER LEFT), and Rx fire 

only treatment (LOWER RIGHT) scenarios. NOTE: all pixels are treated in the three treatment scenarios without 

regard for feasibility to illustrate the variability in fuel treatment effects across the landscape. 
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Figure 25). Under 97th percentile conditions, most of the untreated study site is expected to 

produce active crown fire behavior. The modeled mechanical only and mechanical followed 

by prescribed fire treatments are generally effective at moving active crown fire to passive, and 

in some cases moving passive crown fire to surface fire (
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Figure 25). There are some limited places where the modeled mechanical followed by 

prescribed fire treatment is more effective than mechanical only treatment; it is important to 

recognize that the minor difference captured here is due to the limited resolution of a four-class 

ordinal variable (CFA), and is not meant to suggest there is low value of following up with 

prescribed fire. The prescribed fire only treatment is less effective than the mechanical 

treatments, as modeled, but it often costs less, so it can sometimes look more attractive using 

a metric like benefit-cost ratio. 
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5.3.3 Erosion 

Modeled fuel treatment effects on erosion vary based on treatment effects on fire behavior, 

layered on top of variability in erosion due to soils and topography (Figure 26). The study 

landscape is one of the lower-relief areas of the ARP, and since steep slopes are most-erodible, 

nearly 70% of the study area is expected to have erosion rates < 10 Mg ha-1 in the 1st year post-

fire (sometimes called year 0) and less than 8% of the landscape is expected to have erosion 

rates > 40 Mg ha-1. The highest-erosion hazard areas are steep and densely vegetated, 

associated with canyon walls at lower elevations and the slopes of the Bald Mountains. Like 

effects on fire behavior, mechanical and mechanical followed by prescribed fire treatments 

tend to be very effective at reducing erosion hazard, whereas prescribed fire only treatment has 

lower effectiveness. 

5.3.4 Fuel treatment effects on erosion hazard 

It is assumed that the 14 pre-commercial thinning and thinning for hazardous fuels reduction 

treatment effects are best described by the modeled mechanical only fuel treatment. The 

landscape-scale total erosion hazard is not significantly altered by the fuel treatments (Figure 

 
Figure 26. 1st year post-fire erosion estimates from RUSLE for the baseline (UPPER LEFT), mechanical only treatment 

(UPPER RIGHT), mechanical and Rx fire treatment (LOWER LEFT), and Rx fire only treatment (LOWER RIGHT) 

scenarios assuming every pixel in the landscape is burned under 97th percentile fire weather conditions. NOTE: all 

pixels are treated in the three treatment scenarios without regard for feasibility to illustrate the variability in fuel 

treatment effects across the landscape. 

 
Figure 27. Erosion hazard for pre- and post-treatment landscapes with application of the 14 mechanical only treatments. 

The pre-treatment 1st year erosion rate (UPPER LEFT) can be contrasted with the post-treatment 1st year erosion rate 

(LOWER LEFT). To highlight the effect of treatment, the mean erosion rate reduction was calculated for each 

treatment unit (UPPER RIGHT and LOWER RIGHT).  
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27) which is not surprising given that the treated area amounts to only 1.3% of the landscape 

and the fuel treatments locations were probably not prioritized to reduce erosion. Even though 

these 14 thinning treatments were not optimally-located to reduce erosion hazard, they are 

expected to decrease erosion hazard, in the range of 0.8–30.6 Mg ha-1, or 47.5–69.0% in the 1st 

year post-fire within the areas treated. Treatment unit 4, which is the roadside treatment in the 

western corner of the study landscape, has the highest estimated hazard reduction of 30.6 Mg 

ha-1 in the 1st year post-fire. Hazard does not include wildfire likelihood, which is estimated to 

be lower at this elevation compared to the other thinning treatments (Figure 23).  

5.3.5 Sediment transport 

The Wagenbrenner and Robichaud (2014) annual length ratio model predicts sediment delivery 

ratios ranging from 0.35–0.57 for uplands (Figure 28). Hillslope SDR can be used to scale 

gross erosion produced in each pixel (RUSLE A) to what is delivered to the channel network 

using Equation 2. 

 𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 = 𝐴 ∗ 𝐴𝑟𝑒𝑎𝐶𝑒𝑙𝑙 ∗ 𝑆𝐷𝑅   Eqn. 2 

5.3.6 Hazard of sediment delivery to streams 

The hazard of wildfire-related sediment delivered to streams depends on sediment transport 

(Figure 28), placing stronger emphasis on areas with shorter flow paths to streams (Figure 29). 

Hazard here is measured as the wildfire-related increase in sediment delivered (Mg) over 

unburned conditions, corrected for the multiple post-fire years of elevated erosion (Pietrazek 

2006). Hazard of sediment delivery to streams is concentrated in a few canyons, especially 

North Lone Pine Creek, as well as the high slopes of the Bald Mountains. The maximum 

estimated pixel-level sediment delivery hazard is 25.8 Mg, which should be interpreted as the 

fire-related increase in sediment produced from that pixel delivered to streams over the entire 

period of elevated post fire erosion. The range of hazard reduction from the 14 thinning 

treatments is 3.2–556.2 Mg or 48.0–69.5%, and it is estimated that the combined effect of all 

thinning treatments is a reduction of 1,612.9 Mg of sediment delivered to streams.  

 

Figure 28. Hillslope sediment delivery ratio (SDR) calculated using the annual length ratio model from 

Wagenbrenner and Robichaud 2014. The channel network and lakes are shown in dark blue. Treatment boundaries 

are shown in bright green. 
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5.3.7 Risk of sediment delivery to streams 

Risk of wildfire-related sediment delivery to streams (Figure 30) is the product of hazard of 

sediment delivery (Figure 29) and the 25-year burn probability, and should be interpreted as 

the expected impact over the assessment period (Finney 2005; Scott et al. 2013). Wildfire risk 

is lower than hazard because the probability of experiencing fire is far less than 1.0, even over 

a 25-year period. The maximum pixel-level risk of sediment delivery to streams is only 4.4 Mg 

over 25 years. The major change is de-emphasis of the hazard mapped at higher elevations 

(Figure 29), because these areas have the lowest burn probabilities. Treatment unit 4, which  
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Figure 29. Hazard of sediment delivered to streams (Mg) for pre- and post-treatment landscapes with application of the 14 

mechanical only treatments. Hazard does not account for probability. The values should be interpreted as the mass of 

sediment delivered to streams if a pixel burns under 97th percentile conditions. The pre-treatment mass of sediment 

delivered to streams (UPPER LEFT) can be contrasted with the post-treatment mass of sediment delivered to streams 

(LOWER LEFT). To highlight the effect of treatment, the total reduction in mass of sediment delivered to streams was 

calculated for each treatment unit (UPPER RIGHT and LOWER RIGHT). 

 

 
Figure 30. Risk of sediment delivered to streams (Mg) for pre- and post-treatment landscapes with application of the 14 

mechanical only treatments. Risk accounts for probability of fire over a 25-year planning period. The values should be 

interpreted as the expected mass of sediment delivered to streams over the planning period, assuming all fires burn under 

97th percentile conditions. The pre-treatment expected mass of sediment delivered to streams (UPPER LEFT) can be 

contrasted with the post-treatment expected mass of sediment delivered to streams (LOWER LEFT). To highlight the effect 

of treatment, the total reduction in expected mass of sediment delivered to streams was calculated for each treatment unit 

(UPPER RIGHT and LOWER RIGHT). 
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ranked as the highest value treatment by erosion hazard (Figure 27) and hazard of sediment 

delivery to streams (Figure 29), is now usurped by mid-elevation fuel reduction treatments. 

Estimated risk reductions vary from 0.2–22.2 Mg of sediment over 25 years for the 14 fuel 

reduction treatments, with a total estimated risk reduction from the body of work of 124.1 Mg 

of sediment delivered to streams. 

5.4 Discussion 

In the ARP proposed monitoring plan, watershed condition (Question 1), riparian, aquatic, and 

wetland condition (Question 5), and soil productivity and hydrologic function (Question 12), 

share some overlapping goals that relate broadly to the connected issues of soils and water. 

Wildfires and unpaved forest roads are the primary disturbances affecting soils in Colorado 

forests, followed by forest harvesting, the effects of which can often be controlled through best 

management practices (Macdonald and Stednick 2003). This analysis focused on the effects of 

wildfires on erosion and sediment delivery to streams, given that hazardous fuel treatment is a 

common management activity on the ARP, often with the goal of improving watershed 

resilience to wildfire.  

This linked model approach allows for great flexibility in the temporal and spatial scales of 

analysis, and focus on erosion versus sediment delivery to streams. The framework can further 

be extended with a channel sediment transport model to examine the effects on downstream 

municipal water infrastructure. This flexibility can facilitate an integrated monitoring approach 

that addresses several monitoring questions with consistent analysis, but it also highlights the 

importance of specifying the process(es) to monitor and the spatial and temporal scales. Total 

treatment effects and the relative ranking of treatment units vary based on metrics of erosion 

hazard (Figure 27), hazard of sediment delivery to streams (Figure 29) and risk of sediment 

delivery to streams (Figure 30). 

5.4.1 Erosion versus sediment delivery 

Erosion rate is a reasonable metric to assess changes in soil productivity. Although the 14 fuel 

reduction treatments we examined were not located in areas of high erosion hazard, we estimate 

that they should reduce erosion 47.5-69.0% if the treated areas burn (Figure 27). The absolute 

magnitude of change in erosion rate depends on the baseline hazard, so prioritizing fuel 

reduction treatments in places with higher erosion hazard will yield larger reductions within 

the treated areas and the landscape as a whole. No assessment was made of the total landscape 

impact because we only examined the effects of a subset of existing activities, which cover a 

small percentage of the study landscape (1.3%). Since the monitoring goals relate to protecting 

the entire resources, a comparison of the total landscape baseline hazard with the total 

landscape hazard with treatment is a logical next step that would facilitate more quantitative 

goals, like reduce erosion hazard by 20%, rather than less quantitative metrics like improve 

watershed condition class. We did not present an erosion risk metric, but discussion will follow 

about the relative merits of using hazard and risk metrics.  

It is well known that erosion does not equal downstream sediment delivery (Walling 1983). 

Although soil productivity and hydrologic function are lumped together in the same monitoring 

question (Question 12), their differences can lead to different prioritizations and assessments 

of fuel treatment work (e.g., the spatial differences in hazard between Figure 27 and Figure 
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29). Goals and indicators should be specific to the process and make it clear if there is a priority 

to avoid confusion about which indicator speaks to which goal.   

5.4.2 Hazard versus risk 

Language in the ARP proposed monitoring plan favors risk over hazard, consistent with 

assessment methodologies being promoted by the agency (Scott et al. 2013). An early critique 

of hazardous fuel treatment work focused on the relatively low probability of fuel treatments 

encountering wildfire (Rhodes and Baker 2008), and a recent observational study of wildfire-

fuel treatment interactions found that only 6.8% of fuel treatment units encountered wildfire 

over a 13-year period (Barnett et al. 2016). As a minimum requirement, fuel treatments must 

encounter wildfire during their period of effectiveness to change fire behavior and reduce 

severity. The wildfire risk assessment framework (Scott et al. 2013), as well as any modern 

definition of wildfire risk, includes a likelihood component, usually by integrating a burn 

probability modeling product.  

Burn probability modeling can help to prioritize placement of fuel treatments where they are 

more likely to function, i.e. encounter wildfire. It is important to recognize limitations with the 

approach to frame realistic objectives. Burn probability modeling involves simulating many 

thousands of wildfire events in a static fuelscape (fire 1 does not modify the fuel conditions for 

fire 2) with specified ignition patterns and fire weather conditions. Burn probability products 

are smooth (Figure 23) because of the high number of simulated events, which leads to a rather 

intuitive interpretation that, all other things being equal, fuel treatments will have higher risk 

reduction at lower elevation. Using burn probability modeling to prioritize or assess fuel 

treatment work should lead to higher long-term encounter rates and effects, but there is no 

guarantee that fuel treatment placed in the highest probability pixels will encounter a wildfire 

in the short-term (~25 years), given the high spatial and temporal variability of wildfire. It is 

important to acknowledge this uncertainty when presenting modeling results and to couple 

modeling with reporting of actual encounter rates. It is also important to update risk modeling 

components as fuel treatment work and other disturbances modify the fuelscape. 

Hazard will overestimate the expected fuel treatment effects because it does not factor in the 

probability of fire, but it still has value. If monitoring questions relate to the magnitude of 

event-level impacts, hazard can be used to ask “what if this burns” questions at a variety of 

scales using zonal statistics in ArcGIS or similar tools. A more sophisticated version of this is 

to combine hazard metrics with many simulated fire boundaries to estimate the distribution of 

event-level effects (similar to Thompson et al. 2016). At a minimum, hazard metrics can be 

communicated along with risk metrics to convey the maximum estimated effects (hazard) along 

with the expected effects (risk). 

5.5 Conclusions 

There is a growing library of analytical tools that can help quantify the effects of fuel treatments 

on soil and water resources, that could help address monitoring questions 1, 5, and 12. The 

framework is adaptable to assess a variety of hazard and risk metrics related to local erosion, 

sediment delivery to streams, and with expansion, sediment delivery to downstream municipal 

infrastructure. 
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6 ENHANCEMENT OF WILDLIFE HABITAT 

CFRI is currently working with the ARP to explore the extent to which monitoring methods 

and strategies previously developed by the Wildlife Working Team (WWT), a working group 

within the Front Range Collaborative Forest Restoration Program (FR-CFLRP), may be 

applicable to monitoring with the ARP forest plan. In this report, we aim to summarize the 

approach for selection of species by the WWT and describe the sampling design and 

monitoring approach used to monitor wildlife on FR-CFLRP projects. We also describe an 

additional study, conducted on FR-CFLRP projects, used to monitor wildlife sign before and 

after CFLRP restoration treatments (Briggs et al., 2017). By summarizing efforts currently 

being implemented through the CFLRP, we hope to inform the ARP on potential applications, 

shortcomings, and suggestions for wildlife monitoring program within the ARP as it relates to 

Forest Plan monitoring.   

Developing a robust monitoring plan for wildlife on FR-CFLRP projects has been a complex 

process involving numerous experts and several phases of work. The original CFLRP 

monitoring plan (Clement and Brown 2011) contained suggestions regarding the most 

informative species and taxa to monitor, and recommended an initial focus on recording 

wildlife sign on Common Stand Exam plots before and after treatment. However, neither 

funding nor consensus on the desired conditions for wildlife were readily available for a full 

wildlife monitoring effort during the early years of CLFR work. Thus, the Landscape 

Restoration Team (a sub-team of the Front Range Roundtable) convened a group of wildlife 

experts in 2013 to develop a strong and functional monitoring plan moving forward. In the 

years that followed, this WWT worked through a process of selecting informative species to 

monitor, established monitoring options and protocols, and provided a path forward for wildlife 

 

Figure 31. Schematic used by the Wildlife Working Team to describe the filtering process used to select species to monitor 

on Front Range CFLR projects. 
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monitoring on FR-CFLRP projects. This document is intended to describe that process, such 

that it can be repeated by other groups or agencies such as the ARP, as a wildlife-monitoring 

framework. 

6.1 Filtering process 

The initial step in selecting wildlife species to monitor by the WWT involved creating a 

comprehensive list of vertebrate species and invertebrate family/genera/species that occur in 

Front Range lower montane forests. This list was compiled using existing information such as 

the Colorado Natural Heritage Program database, field guides, local expertise, and agency 

“watch lists” (e.g. USFS Management Indicator Species, Threatened and Endangered Species, 

Candidate Species, etc.). This list of 302 species was then refined through a series of filters to 

create a more narrow, manageable suite of species upon which to focus monitoring efforts 

(Figure 31).  

6.1.1 Filter 1: Distribution filter 

The initial filter was designed to assess the distribution of each species relative to the CFLRP 

footprint, defined as Front Range lower montane forests, from 6,000 to 10,000 feet (1,800 to 

3000 meters) in elevation. Species distributions were classified as follows: 

1. Core species: Species whose known or suspected distribution includes the majority of 

the “core” CFLRP footprint. 

2. Marginal species: Species whose known or suspected distribution is in a portion of 

the CFLRP footprint. 

3. Outside/Extirpated species: Species whose range falls outside the CFLRP footprint, 

including species that formerly occurred but are not known to currently occur within 

the footprint. 

All species with a distribution rated either “marginal” or “outside/extirpated” were removed 

from further consideration, leaving 145 species to consider. 

6.1.2 Filter 2: Ranking filter 

The remaining species whose distribution includes the core CFLRP footprint were then ranked 

based on how ecologically informative they are, their political prudence, and socio-economic 

importance. Species received a rank of 0-3 based on the following criteria: 

1. Ecologically informative: Species were ranked on their key ecological functions (sensu 

Marcot and Heyden 2001) specialization, and reliance on lower montane forests to meet 

life cycle requirements. Although there was not a specific formula used to score species 

based on these sub-criteria, general guidelines were used to help inform scores. 

a. Ecological Functions: Species generally scored higher if they held higher trophic 

positions, represented strong organismal relationships (e.g., pollinators, burrowing 

mammals, cavity excavators), and/or had a strong relationship with vegetation 

composition and structure (e.g., heavy browsers).   

b. Habitat Specialization: Habitat specialists generally scored higher than 

generalists.  

c. Reliance on lower montane: species with a strong reliance on specific habitat 

components or successional stages within the lower montane forests scored 

higher. Residents generally scored higher than migrants. 
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2. Political prudence: Species received a score of 0-3 based on any political pressures that 

may be in place for conservation. A species received a score of 0 if it did not appear on 

any special status lists. A score of 1 was given if it appeared on a special status list such 

as state endangered, threatened, or special concern lists. A species received a score of 2 if 

it was a USFS Sensitive Species or Management Indicator Species, if it appeared on more 

than one special status list, or if it was a candidate species under the Endangered Species 

Act (ESA). A species received a score of 3 if it was listed as Threatened/Endangered or 

was proposed for listing under the ESA. 

 

3. Socio-economic importance: Similar to the Ecologically Informative category, there was 

not a formula used to score the socio-economic importance of a species, but general 

guidelines were used. This category was designed to give some weight to species that are 

important to the public, such as game species (especially ones that generate substantial 

revenue for the State), watchable wildlife species, iconic species (such as the bald eagle 

or mountain bluebird), species that invoke high public interest (such as mountain pine 

beetle), or species of cultural significance.  

 

After species received a score for each of the 3 described categories, each of the categories was 

summed up for a total score. Species remained under consideration if they received a total score 

greater than or equal to 3 AND an Ecologically Informative score greater than or equal to 1 

OR any species with an Ecologically Informative Score greater than or equal to 2. This resulted 

in 64 remaining species.  

6.1.3 Filter 3: Species consideration filter 

The final step in the filtering process involved consideration of stressors, sampling logistics, 

and life history traits to generate a final list of priority species for monitoring. This stage of the 

filtering process involved group discussion to consider each of the remaining species. When 

evaluating a species for stressors, the group considered if changes in populations would be 

attributable to forest management practices, or some other stressor such as climate change or 

recreation. Consideration for sampling logistics included (1) whether sampling protocols exist 

and if data is already being collected for a given species, (2) difficulty or cost for monitoring, 

and (3) whether the species is detectable enough to be effectively monitored. Evaluating life 

history traits considered how informative a given species response to management actions may 

be given the goals of the CFLRP. For example, the Cooper’s hawk would not be considered as 

informative as the Northern goshawk due to its status as a generalist among all woodland 

habitats rather than a lower montane specialist. This final filter resulted in 12 remaining 

species/guilds, which the WWT further classified into Tier I and Tier II species (Table 13). 

Tier I species are top priority species for monitoring, while Tier II species represent species 

that are informative, but monitoring techniques are either not well established or sampling 

would be difficult at the scale of the CFLRP. Given the difficulties in monitoring Tier II 

species, the WWT recommended that those species be monitored opportunistically.  
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6.2 Sampling design 

Monitoring for most Tier I species is conducted following established protocols for Integrated 

Monitoring in Bird Conservation Regions (IMBCR; White et al. 2016) in which point count 

surveys are located in 1 km2 grids located throughout the Front Range (see Table 13 for 

sampling methods and protocols). Specifically, the FR-CFLRP uses a spatially balanced 

sampling design in which 120 grids are evenly distributed across Front Range National Forests 

(60 grids on the Pike-San Isabel (PSI), and 60 on the ARP; Figure 32). Of the 60 grids on each 

National Forest, 30 represent treatment grids, and 30 represent control grids. Treatment grids 

are defined as having greater than or equal to 30% (74.1 acres) of the grid receiving forest 

treatment. Additionally, sampling grids had to have at least 80% USFS ownership, fall within 

specific elevational bands (6000 – 9000 feet on the ARP, 6000 – 9500 feet on the PSI), have 

not burned in wildfires between 1998 and 2013, and could not fall outside the FR-CFLRP 

project boundary. Given these constraints, grids were randomly selected across both National 

Forests (Figure 32). 

6.3 Monitoring protocol  

Monitoring protocols utilized by the FR-CFLRP are intended to yield, at minimum, occupancy 

estimates for each species in treated and non-treated sites using presence/absence data (See 

Figure 33). In some cases, density estimates may also be calculated. The majority of Tier I 

species are sampled biennially on monitoring grids by the Bird Conservancy of the Rockies 

(BCR). Monitoring grids consist of 16 points, spaced 250 meters apart (Figure 33). Technicians 

Table 13. FR-CFLRP wildlife working group recommendation of wildlife species to monitor.   

Wildlife Guild/ Species Tier I Tier 

II 

Sampling 

Methodology 

Sampling Protocol Metric 

Bats:  big brown bat, hoary bat, 

little brown bat, long-legged 

myotis, silver-haired bat, western 

long-eared myotis and western 

small-footed myotis. 

 X Acoustic   Occupancy (% occupied) 

Songbirds: golden-crowned 

kinglet, olive-sided flycatcher, 

mountain blue bird, and pygmy 

nuthatch. 

X  Visual and Acoustic Integrated 

Monitoring in Bird 

Conservation 

Region (IMBCR) 

Occupancy (% occupied) 

and density (# of birds) 

Woodpeckers: hairy 

woodpecker, and Williamson’s 

sapsucker.  

X  Visual and Acoustic Integrated 

Monitoring of Bird 

Conservation 

Region (IMBCR) 

Occupancy (% occupied) 

and density (# of birds) 

Owls: flammulated owl  X Visual and Acoustic Partners in Flight 

Flammulated Owl 

Survey Protocol 

Occupancy (% occupied) 

Raptor: northern goshawk* 

* Note: the CFLRP has not 

monitored northern goshawk to 

date. 

X  Visual and Acoustic Northern Goshawk 

Inventory and 

Monitoring 

Technical Guide 

GTR WO-71 

Occupancy (% occupied) 

Tree Squirrels: pine 

squirrel and Abert’s squirrel.  
X  Wildlife Sign or Camera 

Trap 

Sign surveys or 

Camera Traps 

Occupancy (% occupied) 

Carabid beetles: not 

species specific 
 X Capture Pitfall traps Occupancy (% occupied) 

and density (# of 

invertebrates) 
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sample grids consistent with protocols established by the Integrated Monitoring in Bird 

Conservation Regions (IMBCR) project (for full protocol see Hanni et al. 2016; White et al. 

2016). 

Technicians conduct surveys in the morning, beginning 30 minutes before sunrise, and 

concluding no later than 5 hours after sunrise. Points are sampled for 6 minutes, and technicians 

record the following attributes for each individual: species, sex, horizontal distance from 

 

Figure 33. FR-CFLR wildlife monitoring grid locations. Image courtesy Casey Cooley, Colorado Parks & Wildlife. 

 

Figure 32. Left: Grid design used to monitor wildlife species for the FR-CFLRP. Right: Example of species occupancy data 

obtained from BCR monitoring effort. Image courtesy Casey Cooley, Colorado Parks and Wildlife. 
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observer, minute (referring to 6-minute sampling window), type of detection (visual, call, 

song), whether the individual is thought to be a migrant, and whether the observer is able to 

visually identify the individual. If individuals cannot be detected independently (e.g. flocks of 

conspecific birds), detections are recorded as a cluster, with the number of individuals included 

in the cluster rather than independent observations. Individuals that are not observed during a 

point count are also recorded opportunistically if they are observed while a technician is 

travelling between points. Opportunistic observations are used for mapping species 

distributions only, and are not used in any density or occupancy analyses. In addition to wildlife 

observations, technicians record weather measurements (temperature, wind, precipitation, and 

cloud cover) and coarse vegetation measurements within a 50-meter radius of the point. 

Vegetation measurements include dominant habitat type and relative abundances, percent 

cover and average height of trees and shrubs by species, grass height, and ground cover types.   

In addition to the primary monitoring program described above, several species-specific 

monitoring approaches are also used. Because the IMBCR protocols rely on aural detections 

for species such as songbirds, woodpeckers, and the pine squirrel, they may not be effective in 

detecting less vocal species such as the Abert’s squirrel. In an effort to more effectively monitor 

Abert’s squirrel, the WWT initiated a pilot study with the USFS and Colorado Parks and 

Wildlife utilizing camera traps and feeding sign surveys at a subset of 40 IMBCR monitoring 

grids. In each of the 40 grids, one camera trap was deployed using peanut butter and a rabbit 

lure as attractant. These methods allowed for opportunistic detections of numerous species, as 

well as Abert’s squirrel (Figure 34). 
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In addition to the camera trap, Abert’s feeding sign transects were implemented at the center 4 

points of each grid (Figure 33, points 6, 7, 10, and 11). At each of the sample points, 4 transects 

were sampled for signs of Abert’s squirrel feeding activity (e.g. clippings and “cone cobs”). 

Results from the pilot study are pending, but preliminary results are promising as methods 

successfully detected Abert’s squirrels yielding occupancy estimates. Additionally, since the 

USFS already regularly monitors goshawk on 5-year intervals using broadcast acoustical 

surveys, the FR-CFLRP leverages this data for goshawk occupancy estimation (see 

Woodbridge and Hargis 2006 for full protocol).  

Currently, discussions are ongoing for analyzing data collected by BCR. The WWT is working 

with BCR to develop a list of habitat covariates from bird monitoring data. These covariates 

will help the group glean information on potential population changes based on several habitat 

metrics, sensitive to forest management, that are more easily monitored across the landscape. 

6.4 Future directions 

This report describes the framework used by WWT to select wildlife species to monitor for the 

FR-CFLRP. Although this approach is specific to lower montane forests along the Front Range, 

this framework can be applied to other ecosystem types. Given a comprehensive species list, 

and a working group of local experts, the process of filtering species by distribution, relevant 

criteria/values, and stressors/sampling logistics can be accomplished for other systems. The 

monitoring protocols described in this report outline methods that provide occupancy 

information for targeted species (e.g. IMBCR point counts), as well as opportunistic detections 

 

Figure 34.Wildlife detection data obtained from camera trapping effort, showing detections of tree squirrels, as well as 

numerous other opportunistic detections of other species. Image courtesy Casey Cooley, Colorado Parks and Wildlife. 
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of other species (e.g., camera trapping), using a spatially balanced design to distribute sampling 

points among strata of interest. Results from this effort could be useful to the ARP, yielding 

habitat covariates associated with species occupancy and density estimates that may be more 

feasible to monitor than individual wildlife species.  

While the process described above is one example of a tool used to select species for 

monitoring, other approaches could be utilized such as a correlation matrix of species 

occurrences. Given information on species detections at discrete locations, a correlation matrix 

could be utilized to determine which species commonly co-occur on the landscape. With this 

knowledge, land managers can selectively monitor fewer species, while inferring information 

on the larger community, thus saving time and money. Although the correlation matrix 

approach is a relatively simple analytical exercise, existing data on species occurrence related 

to discrete points in space limits the utility of this approach. To the best of our knowledge, 

aside from goshawk surveys conducted by the USFS, this type of data is only collected by the 

BCR on the ARP. Additionally, since this data is only related to birds, it is not possible to relate 

bird occurrence data with other taxa such as mammals, reptiles/amphibians, or insects. Finally, 

data made publicly available by the BCR only provides summarized occupancies by strata, and 

obtaining raw point counts has been exceedingly difficult. Unless the required data to compare 

species occurrences becomes available, the correlation matrix approach may not be possible. 

Finally, (Briggs et al. 2017) conducted a study in which 0.1 acre circular plots were searched 

for signs of tree dwelling squirrels and ungulates on FR-CFLRP projects, finding no significant 

differences of habitat use resulting from forest treatment. These methods provide an additional 

approach to wildlife monitoring that does not require the high level of technical expertise that 

is required by the IMBCR point counts. Although this study did not find statistical differences 

in habitat use for squirrels and ungulates resulting from forest management, these 

measurements were taken shortly after forests were treated, and the authors suggest longer term 

monitoring to fully understand abundances, behavior, and distributions following treatment. 

Nonetheless, monitoring signs of habitat use could provide a more practical approach to 

monitoring wildlife than bird point counts, which require a high level of expertise in both 

monitoring and data analyses, given that fresh signs of chosen wildlife species can be easily 

observed. 

6.5 Members of FR-CFLRP Wildlife Working Team 

CFRI would like to acknowledge and thank the members of the Wildlife Working Team for 

their contributions toward the development of the process outlined in this document: 

 Rick Truex – USFS, Rocky Mountain Region 

 Jenny Briggs - USGS 

 Casey Cooley – Colorado Parks and Wildlife 

 Lynne Deibel – Arapaho Roosevelt National Forest 

 Steve Germaine - USGS 

 Hal Gibbs - USFS 

 Felix Quesada – USFS Pikes Peak Ranger District 

 Janelle Valladares – Pike San Isabel National Forest 

 Terra Lenihan – (former) facilitator, Beh Consulting 

  



 

58 

 

7 REFERENCES 

Addington R, Pelz K, Cheng T (2014) Colorado Front Range Collaborative Forest Landscape 

Restoration Project Ecological Monitoring of Treatment Effects on Stand Structure and 

Fuels through 2013 

Barnett K, Parks SA, Miller C, Naughton HT (2016) Beyond fuel treatment effectiveness: 

Characterizing interactions between fire and treatments in the US. Forests 7: . doi: 

10.3390/f7100237 

Barrett KJ, Brown PM, Clement J, et al (2017) Front Range Roundtable Collaborative forest 

landscape restoration Project: 2017 Ecological, Social and Economic Monitoring plan 

Boyden S, Montgomery R, Reich PB, Palik B (2012) Seeing the forest for the heterogeneous 

trees: Stand-scale resource distributions emerge from tree-scale structure. Ecol Appl 

22:1578–1588 . doi: 10.1890/11-1469.1 

Braaten JD, Cohen WB, Yang Z (2017) LandsatLinkr. Zenodo. 

http://dx.doi.org/10.5281/zenodo.807733 

Bradshaw LS, McCormick E (2000) FireFamily Plus User’s Guide 

Briggs JS, Fornwalt PJ, Feinstein JA (2017) Short-term ecological consequences of 

collaborative restoration treatments in ponderosa pine forests of Colorado. For Ecol 

Manage 395:69–80 . doi: 10.1016/j.foreco.2017.03.008 

Brown JK (1974) Handbook for Inventorying Downed Woody Material. USDA For Serv Gen 

Tech Rep 24 . doi: 10.1017/CBO9781107415324.004 

Caggiano MD (2017) Front Range Round Table 2016 Interagency Fuel Treatment Database 

Caggiano MD, Tinkham WT, Hoffman C, et al (2016) High resolution mapping of 

development in the wildland-urban interface using object based image extraction. Heliyon 

2: . doi: 10.1016/j.heliyon.2016.e00174 

Cannon JB, Barrett KJ (2016) 2016 Front Range CFLRI Monitoring: Progress, Outcomes, and 

Recommendations 

Cannon JB, Barrett KJ, Gannon BM, et al A framework for monitoring and adaptively 

managing forest restoration treatments. prep 

Clement J, Brown P (2011) Front Range Roundtable collaborative forest landscape restoration 

pProject 2011 ecological, social and economic Monitoring plan. 51 

Cohen JD (1995) Structure ignition assessment model (SIAM). In: Proceedings of Biswell 

Symposium: Fire issues and solutions in urban interface and wildland ecosystems, 

General Technical Report PSW-158. USDA Forest Service, Pacific Southwest Research 

Station, Albany, CA, pp 85–92 

Cohen JD (2000) Preventing disasters: Home ignitability in the wildland-urban interface. J For 

98:15–21 

Collins BM, Stevens JT, Miller JD, et al (2017) Alternative characterization of forest fire 

regimes: incorporating spatial patterns. Landsc Ecol 32:1543–1552 . doi: 10.1007/s10980-

017-0528-5 



 

59 

 

Crosby JS, Chandler CC (1966) Get the Most From Your Windspeed Observations. Fire 

Control Notes 27:53–55 

Deo RK, Froese RE, Falkowski MJ, Hudak AT (2016) Optimizing Variable Radius Plot Size 

and LiDAR Resolution to Model Standing Volume in Conifer Forests. Can J Remote Sens 

42:428–442 . doi: 10.1080/07038992.2016.1220826 

Dickinson Y (2014) Landscape restoration of a forest with a historically mixed-severity fire 

regime: What was the historical landscape pattern of forest and openings? For Ecol 

Manage 331:264–271 . doi: 10.1016/j.foreco.2014.08.018 

Dickinson Y, Pelz K, Giles E, Howie J (2016) Have we been successful? Monitoring horizontal 

forest complexity for forest restoration projects. Restor Ecol 24:n/a-n/a . doi: 

10.1111/rec.12291 

Dickinson YL, SHSFRR (2014) Desirable Forest Structures for a Restored Front Range 

Dickson BG, Olsson  a. D, Sesnie SE, Williamson M a. (2011) Development of state-of-the-

art tools and functionality for the Kaibab National. 54 

Falkowski MJ, Evans JS, Martinuzzi S, et al (2009) Characterizing forest succession with lidar 

data: An evaluation for the Inland Northwest, USA. Remote Sens Environ 113:946–956 . 

doi: 10.1016/j.rse.2009.01.003 

Falkowski MJ, Hudak AT, Crookston NL, et al (2010) Landscape-scale parameterization of a 

tree-level forest growth model: a k- nearest neighbor imputation approach incorporating 

LiDAR data. Can J For Res 40:184–199 . doi: 10.1139/X09-183 

Finney MA (2006) An Overview of FlamMap Fire Modeling Capabilities. Fuel Manag to Meas 

Success Conf Proceedings 28-30 March 213–220 . doi: U.S. Forest Serice Research Paper 

RMRS-P-41 

Finney MA (2005) The challenge of quantitative risk analysis for wildland fire. For Ecol 

Manage 211:97–108 . doi: 10.1016/j.foreco.2005.02.010 

Finney MA, McHugh CW, Grenfell IC, et al (2011) A simulation of probabilistic wildfire risk 

components for the continental United States. Stoch Environ Res Risk Assess 25:973–

1000 . doi: 10.1007/s00477-011-0462-z 

Finney M, Grenfell IC, McHugh CW (2009) Modeling containment of large wildfires using 

generalized linear mixed-model analysis. For Sci 55:249–255 . doi: 

10.1002/9780471789475.ch11 

Front Range Roundtable Fuels Treatment Partnership (2006) Living with Fire: Protecting 

Communities and Restoring Forests 

Fulé PZ, Crouse JE, Roccaforte JP, Kalies EL (2012) Do thinning and/or burning treatments in 

western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire 

behavior? For Ecol Manage 269:68–81 . doi: 10.1016/j.foreco.2011.12.025 

Girvetz EH, Greco SE (2007) How to define a patch: A spatial model for hierarchically 

delineating organism-specific habitat patches. Landsc Ecol 22:1131–1142 . doi: 

10.1007/s10980-007-9104-8 

Haas JR, Calkin DE, Thompson MP (2015) Wildfire Risk Transmission in the Colorado Front 

Range , USA. 35:226–240 . doi: 10.1111/risa.12270 



 

60 

 

Hanni D, White C, Van Lanen N, et al (2016) Integrated Monitoring in Bird Conservation 

Regions (IMBCR): Field protocol for spatially balanced sampling of landbird populations 

Henkle JE, Wohl E, Beckman N (2011) Locations of channel heads in the semiarid Colorado 

Front Range, USA. Geomorphology 129:309–319 . doi: 10.1016/j.geomorph.2011.02.026 

Kennedy RE, Yang Z, Cohen WB (2010) Detecting trends in forest distrubance and recovery 

using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. 

Remote Sens Environ 114:2897–2910 

Larsen IJ, MacDonald LH (2007) Predicting postfire sediment yields at the hillslope scale: 

Testing RUSLE and Disturbed WEPP. Water Resour Res 43:1–18 . doi: 

10.1029/2006WR005560 

Lillesand TM, Kiefer RW, Chipman JW (2015) Remote sensing and image interpretation, 7th 

editio. John Wiley & Sons, Inc. 

Litschert SE, Theobald DM, Brown TC (2014) Effects of climate change and wildfire on soil 

loss in the Southern Rockies Ecoregion. Catena 118:206–219 . doi: 

10.1016/j.catena.2014.01.007 

Macdonald LH, Stednick JD (2003) Forests and water: A state-of-the-art review for Colorado 

Marcot BG, Heyden MVH (2001) Key ecological functions of wildlife species. In: Wildlife-

Habitat Relationships in Oregon and Washington. pp 168–186 

McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: Spatial pattern program for 

categorical and continuous maps 

Miller C, Ager AA (2013) A review of recent advances in risk analysis for wildfire 

management. Int J Wildl Fire 22:1–14 . doi: 10.1071/WF11114 

Neary DG., Ryan KC., DeBano LF (2005) Wildland Fire in Ecosystems, effects of fire on soil 

and water. USDA-FS Gen Tech Rep 4:250 . doi: http://dx.doi.org/10.1111/j.1467-

7717.2009.01106.x 

Pelz KA, Dickinson YL (2014) Monitoring forest cover spatial patterns with aerial imagery : 

A tutorial 

Pierson FB, Jason C, Pierson W, Williams FB; (2016) Ecohydrologic Impacts of Rangeland 

Fire on Runoff and Erosion: A Literature Synthesis. 110 

Pietrazek JH (2006) Controls on post-fire erosion at the hillslope scale, Colorado Front Range. 

Colorado State University 

Ray CT, Williamson M a, Zachmann LJ, et al (2013) Rapid Plot Monitoring Design for the 

Kaibab National Forest 

Reinhardt ED, Keane RE, Calkin DE, Cohen JD (2008) Objectives and considerations for 

wildland fuel treatment in forested ecosystems of the interior western United States. For 

Ecol Manage 256:1997–2006 . doi: 10.1016/j.foreco.2008.09.016 

Renard K, Foster G, Weesies G, et al (1997) Predicting soil erosion by water: a guide to 

conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. 

Handb. No. 703 404 

Renard KG, Freimund JR (1994) Using monthly precipitation data to estimate the R-factor in 



 

61 

 

the revised USLE. J Hydrol 157:287–306 . doi: 10.1016/0022-1694(94)90110-4 

Rhodes JJ, Baker WL (2008) Fire Probability, Fuel Treatment Effectiveness and Ecological 

Tradeoffs in Western U.S. Public Forests. Open For Sci J 1:1–7 . doi: 

10.2174/1874398600801010001 

Schmeer SR (2014) Post-fire erosion response and recovery, High Park Fire, Colorado. 

Colorado State University 

Schoennagel T, Nelson CR, Theobald DM, et al (2009) Implementation of National Fire Plan 

treatments near the wildland-urban interface in the western United States. Proc Natl Acad 

Sci 106:10706–10711 . doi: 10.1073/pnas.0900991106 

Scott JH, Burgan RE (2005) Standard Fire Behavior Fuel Models : A Comprehensive Set for 

Use with Rothermel’s Surface Fire Spread Model. Gen Tech Rep RMRS-GTR-153 1–80 

. doi: U.S Forest Service General Technical Report RMRS-GTR-153 

Scott JH, Reinhardt ED (2001) Assessing Crown Fire Potential by Linking Models of Surface 

and Crown Fire Behavior. Usda For Serv Rocky Mt Res Stn Res Pap Rmrs RMRS-RP-

29:59 

Scott JH, Thompson MP, Calkin DE (2013) A Wildfire Risk Assessment Framework for Land 

and Resource Management 

Shakesby RA, Doerr SH (2006) Wildfire as a hydrological and geomorphological agent. Earth-

Science Rev 74:269–307 . doi: 10.1016/j.earscirev.2005.10.006 

Short KC, Finney MA, Scott JH, et al (2016) Spatial dataset of probabilitistic wildfire risk 

components for the conterminous United States. Fort Collins, CO. Forest Service 

Research Data Archive. https://doi.org/10.2737/RDS-2016-0034 

Stephens SL, Moghaddas JJ (2005) Experimental fuel treatment impacts on forest structure, 

potential fire behavior, and predicted tree mortality in a California mixed conifer forest. 

For Ecol Manage 215:21–36 . doi: 10.1016/j.foreco.2005.03.070 

Stephens SL, Moghaddas JJ, Edminster C, et al (2009) Fire treatment effects on vegetation 

structure, fuels , and potential fire severity in western U.S. forests 

Stevens JT, Collins BM, Long JW, et al (2016) Evaluating potential trade-  offs among fuel 

treatment strategies in conifer forests of the Sierra Nevada. 7:1–21 . doi: 

10.1002/ecs2.1445 

Stratton RD (2009) Guidebook on LANDFIRE Fuels Data Acquisition, Critique, Modification, 

Maintenance, and Model Calibration. Critique 54 p. 

Theobald DM, Merritt DM, Norman III JB (2010) Assessment of threats to riparian ecosystems 

in the Western US 

Thompson MP, Calkin DE (2011) Uncertainty and risk in wildland fire management: A review. 

J Environ Manage 92:1895–1909 . doi: 10.1016/j.jenvman.2011.03.015 

Thompson MP, Gilbertson-Day JW, Scott JH (2016) Integrating Pixel- and Polygon-Based 

Approaches to Wildfire Risk Assessment: Application to a High-Value Watershed on the 

Pike and San Isabel National Forests, Colorado, USA. Environ Model Assess 21:1–15 . 

doi: 10.1007/s10666-015-9469-z 

Thompson MP, Scott J, Helmbrecht D, Calkin DE (2013a) Integrated wildfire risk assessment: 



 

62 

 

Framework development and application on the lewis and clark national forest in 

Montana, USA. Integr Environ Assess Manag 9:329–342 . doi: 10.1002/ieam.1365 

Thompson, Vaillant, Haas, et al (2013b) Quantifying the Potential Impacts of Fuel Treatments 

on Wildfire Suppression Costs. J For 111:49–58 . doi: 10.5849/jof.12-027 

Tillery A, Haas J (2016) Potential Postwildfire Debris-Flow Hazards — A Prewildfire 

Evaluation for the Jemez Mountains, North-Central New Mexico 

Tillery AC, Haas JR, Miller LW, et al (2014) Potential postwildfire debris-flow hazards: a 

prewildfire evaluation for the Sandia and Manzano Mountains and surrounding areas, 

central New Mexico 

US Forest Service Natural Resource Management (2017) Hazardous Fuel Reduction Treatment 

database 

USDA Forest Service (2015) FSVeg Common Stand Exam User Guide 

VanDerWal J, Falconi L, Januchowski S, et al (2014) SDMTools: Species Distribution 

Modelling Tools: Tools for processing data associated with species distribution modelling 

exercises. R package version 1.1-221 

Vogeler J, Braaten J, Slesak R, Falkowski M Extracting the full value of the Landsat archive: 

Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–

2015). Rev 

Wagenbrenner JW, Robichaud PR (2014) Post-fire bedload sediment delivery across spatial 

scales in the interior western United States. Earth Surf Process Landforms 39:865–876 . 

doi: 10.1002/esp.3488 

Walling DE (1983) The sediment delivery problem. J Hydrol 65:209–237 . doi: 10.1016/0022-

1694(83)90217-2 

White CM, McLaren MF, Van Lanen NJ, et al (2016) Integrated Monitoring in Bird 

Conservation Regions (IMBCR): 2015 Field Season Report 

Woodbridge B, Hargis CD (2006) Northern goshawk inventory and monitoring technical guide 

Yochum SE, Norman JB (2015) Federal Interagency Hydrologic Modeling Conference April 

19-23, 2015, Peppermill Hotel, Reno, Nevada, USA. In: Proceedings of the 3rd Joint 

Federal Interagency Conference on Sedimentation and Hydrolgic Modeling 

Young N, Reeder C, Addington R, et al (2013) Colorado Front Range Collaborative Forest 

Landscape Restoration Project: 2011-2012 Pre- and Post-treatment Stand Structure 

Analyses for the Pike and San Isabel and Arapaho and Roosevelt National Forests 

Ziegler JP, Hoffman C, Battaglia M, Mell W (2017) Spatially explicit measurements of forest 

structure and fire behavior following restoration treatments in dry forests. For Ecol 

Manage 386:1–12 . doi: 10.1016/j.foreco.2016.12.002 

 


