
Glob Change Biol. 2023;00:1–22. wileyonlinelibrary.com/journal/gcb  | 1© 2023 John Wiley & Sons Ltd.

Received: 23 February 2023  | Revised: 25 August 2023  | Accepted: 31 August 2023

DOI: 10.1111/gcb.16939  

R E S E A R C H  A R T I C L E

Refuge- yeah or refuge- nah? Predicting locations of forest 
resistance and recruitment in a fiery world

Kyle C. Rodman1  |   Kimberley T. Davis2  |   Sean A. Parks3  |   Teresa B. Chapman4  |   
Jonathan D. Coop5  |   Jose M. Iniguez6  |   John P. Roccaforte1  |   Andrew J. Sánchez Meador1,7  |   
Judith D. Springer1  |   Camille S. Stevens- Rumann8,9  |   Michael T. Stoddard1 |    
Amy E. M. Waltz1  |   Tzeidle N. Wasserman1

1Ecological Restoration Institute, Northern 
Arizona University, Flagstaff, Arizona, USA
2Fire Sciences Laboratory, Rocky 
Mountain Research Station, USDA Forest 
Service, Missoula, Montana, USA
3Aldo Leopold Wilderness Research 
Institute, Rocky Mountain Research 
Station, USDA Forest Service, Missoula, 
Montana, USA
4Monitoring, Evaluation, and Learning 
Program, Chief Conservation Office, The 
Nature Conservancy, Arlington, Virginia, 
USA
5Clark School of Environment and 
Sustainability, Western Colorado 
University, Gunnison, Colorado, USA
6Rocky Mountain Research Station, USDA 
Forest Service, Flagstaff, Arizona, USA
7School of Forestry, Northern Arizona 
University, Flagstaff, Arizona, USA
8Colorado Forest Restoration Institute, 
Colorado State University, Fort Collins, 
Colorado, USA
9Department of Forest and Rangeland 
Stewardship, Colorado State University, 
Fort Collins, Colorado, USA

Correspondence
Kyle C. Rodman, Ecological Restoration 
Institute, Northern Arizona University, 
Flagstaff, AZ 86011, USA.
Email: kyle.rodman@nau.edu

Funding information
U.S. Forest Service, Grant/Award Number: 
22- DG- 11030000- 012

Abstract
Climate warming, land use change, and altered fire regimes are driving ecological 
transformations that can have critical effects on Earth's biota. Fire refugia— locations 
that are burned less frequently or severely than their surroundings— may act as sites 
of relative stability during this period of rapid change by being resistant to fire and 
supporting post- fire recovery in adjacent areas. Because of their value to forest eco-
system persistence, there is an urgent need to anticipate where refugia are most 
likely to be found and where they align with environmental conditions that support 
post- fire tree recruitment. Using biophysical predictors and patterns of burn severity 
from 1180 recent fire events, we mapped the locations of potential fire refugia across 
upland conifer forests in the southwestern United States (US) (99,428 km2 of forest 
area), a region that is highly vulnerable to fire- driven transformation. We found that 
low pre- fire forest cover, flat slopes or topographic concavities, moderate weather 
conditions, spring- season burning, and areas affected by low-  to moderate- severity 
fire within the previous 15 years were most commonly associated with refugia. Based 
on current (i.e., 2021) conditions, we predicted that 67.6% and 18.1% of conifer forests 
in our study area would contain refugia under moderate and extreme fire weather, 
respectively. However, potential refugia were 36.4% (moderate weather) and 31.2% 
(extreme weather) more common across forests that experienced recent fires, sup-
porting the increased use of prescribed and resource objective fires during moderate 
weather conditions to promote fire- resistant landscapes. When overlaid with models 
of tree recruitment, 23.2% (moderate weather) and 6.4% (extreme weather) of forests 
were classified as refugia with a high potential to support post- fire recruitment in 
the surrounding landscape. These locations may be disproportionately valuable for 
ecosystem sustainability, providing habitat for fire- sensitive species and maintaining 
forest persistence in an increasingly fire- prone world.
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1  |  INTRODUC TION

Climate change, human land use, and altered fuels complexes are 
modifying fire regimes and reshaping forest ecosystems worldwide 
(Arias et al., 2021; Balch et al., 2017; Clarke et al., 2022; Hartmann 
et al., 2022). Shifting climate conditions, combined with severe fire 
activity, can overwhelm forest resilience processes (e.g., survival 
and recruitment) and drive rapid ecological reorganization (Falk 
et al., 2022; Johnstone et al., 2016). Forests dominated by conifer-
ous obligate seeders (i.e., cone- bearing trees that reproduce only 
from seed) may be particularly vulnerable to fire- driven transforma-
tions towards non- forest cover (e.g., shrubland or grassland), with 
potential effects on carbon storage, nutrient cycling, biodiversity, 
and other important ecosystem services (Guiterman et al., 2022; 
Hessburg et al., 2019). Fire- driven transformations can occur when 
(1) severe fires eliminate seed- bearing trees in large patches that ex-
ceed typical seed dispersal distances, (2) fires occur at sites or in time 
periods where regeneration is limited by environmental conditions, 
or (3) increases in fire frequency (e.g., severe, short- interval reburns) 
exceed the ability of local species to establish, reach fire- tolerant 
sizes, and/or reach reproductive maturity (Coop et al., 2020; Enright 
et al., 2015). However, the rate and magnitude of fire- driven eco-
system changes will not play out uniformly across landscapes and 
species' ranges but will depend on the suite of factors that influence 
fire severity and species' environmental tolerances. Locations where 
current forests are buffered from altered fire regimes and climate 
change are critical to sustaining forest biota and ecosystem func-
tions over upcoming decades, and may also facilitate species migra-
tion and adaptation over longer time scales (Jump & Peñuelas, 2005; 
Krawchuk et al., 2020; Morelli et al., 2020). Accordingly, identifying 
such locations will be valuable for predicting and mitigating the ef-
fects of fire- driven transformations in forested ecosystems.

Resilience, or the ability of systems to withstand and per-
sist through disturbance, is controlled by both resistance and re-
covery mechanisms (Albrich et al., 2020; Hodgson et al., 2015; 
Holling, 1973). Fire refugia are defined as locations that are disturbed 
less frequently or less severely by fire than their surroundings (Camp 
et al., 1997; Krawchuk et al., 2020; Meddens et al., 2018). Because 
these locations embody resistance to change and can also promote 
post- fire recovery in the surrounding landscape, they can serve as 
key elements of forest resilience in the context of a warming and 
more fire- prone world. Fire refugia have been identified across vary-
ing temporal and spatial scales, ranging from locations of tree sur-
vival after a single fire (Chapman et al., 2020), to forest stands that 
remain stable through multiple fire events (Downing et al., 2021). 
Here, we seek to identify forested (i.e., ≥10% canopy cover) sites 
that are likely to be skipped (i.e., unburned islands) or burned at low 
severity within future fire events, a definition that is broadly rele-
vant to a range of forest ecosystems (Meddens et al., 2018).

Unburned and low- severity areas can make up 40% or more 
of a given fire event (Kolden et al., 2012; Krawchuk et al., 2016). 
However, predicting the locations of such areas in future events is 
challenging because individual fires can be shaped by a wide range 

of factors such as fuels, topography, weather, past fire effects, and 
their interactions (Figure 1). For example, vegetation structure, com-
position, and spatial pattern can influence fire behavior at a range 
of spatial scales, and open- canopied forests might be expected 
to have greater fire resistance (Finney, 2001; Koontz et al., 2020; 
Yocom et al., 2022). Refugia are also more likely to be found in valley 
bottoms and sheltered topographic settings that are skipped during 
periods of active fire behavior (Estes et al., 2017; Meigs et al., 2020). 
Weather is an important driver of fire behavior that can interact 
with fuels and topography; forests burning under moderate weather 
conditions (e.g., low wind speeds, cool temperatures) may be more 
likely to contain refugia (Chapman et al., 2020; Collins et al., 2019; 
Downing et al., 2021). Across many forests of the western United 
States (US), large fires have been shown to reduce subsequent fire 
occurrence or severity for 10 years or more (Buma et al., 2020; Har-
ris et al., 2021; Stevens- Rumann et al., 2016), though these effects 
can vary based on local plant community traits and the severity of 
the initial fire (Coppoletta et al., 2016; Tepley et al., 2018). A range of 
individual factors influence fire severity and the locations of refugia, 
but there is a pressing need to understand how these factors inter-
act with regeneration processes to shape the resilience of today's 
forest ecosystems.

While refugia play an important role in post- fire tree recruit-
ment by providing critical seed sources (Chambers et al., 2016; Coop 
et al., 2019; Kemp et al., 2016) and buffering microclimatic condi-
tions (Carlson et al., 2021; Wooten et al., 2022), recruitment adja-
cent to refugia is also likely to vary based on biophysical conditions 
and individual species' climatic tolerances (Figure 1). For successful 
recruitment, seed dispersal must occur in sites that can support ger-
mination and longer- term seedling survival (Grubb, 1977; Rodman, 

F I G U R E  1  A summary of factors influencing forest resilience 
to wildfire. Fire severity is influenced by fuels, topography, and 
weather conditions during burning, as well as the effects of prior 
fires. For obligate seeders, post- fire tree recruitment is then 
constrained by seed availability and environmental conditions.
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Veblen, Chapman, et al., 2020). However, a warming climate is al-
ready altering site suitability for post- fire conifer recruitment (Davis 
et al., 2023; Korb et al., 2019; Stevens- Rumann et al., 2018). Even 
in close proximity to seed sources, tree regeneration is often lim-
ited at dry sites or when fires are followed by drought events 
(Guz et al., 2021; Harvey et al., 2016; Rodman, Veblen, Battaglia, 
et al., 2020). More broadly, many western US forests are in a state of 
disequilibrium with current and near- term- future climate due to the 
rapid pace of environmental change over the past century (Gray & 
Hamann, 2013; Parks, Dobrowski, et al., 2019). Furthermore, within 
any given tree species, seedlings are more climatically sensitive than 
large trees (Bell et al., 2014; Dobrowski et al., 2015). Thus, it is un-
likely that all refugia will facilitate post- fire forest recruitment be-
cause locations with surviving trees may not consistently align with 
conditions necessary for post- fire tree regeneration of the existing 
tree species.

Identifying refugia that are likely to facilitate tree recruitment 
in the surrounding landscape is particularly valuable in forests of 
the southwestern US, which are highly vulnerable to the effects of 
a changing climate (Thorne et al., 2018; Triepke et al., 2019). For-
ests in this region have recently experienced increases in both fire 
severity and annual area burned (Higuera et al., 2021; Parks & Abat-
zoglou, 2020; Singleton et al., 2019), as well as some of the driest 
conditions since at least 800 CE (Williams et al., 2022). Indeed, shift-
ing wildfire regimes and climate warming have already driven forest 
transformations across southwestern US ecosystems (Guiterman 
et al., 2022; Stevens et al., 2021), with further increases expected 
in the future (Davis et al., 2020; Parks, Dobrowski, et al., 2019; Rod-
man, Veblen, Battaglia, et al., 2020). Management strategies such 
as mechanical thinning (i.e., using mechanized equipment to remove 
tree biomass), prescribed fire, resource objective fire (i.e., allowing 
lightning- ignited fires to burn without aggressive suppression), and 
post- fire reforestation are increasingly used to offset the effects of 
a changing climate and altered fire activity on southwestern US for-
ests (Huffman et al., 2020; North et al., 2015; Stevens et al., 2021). 
The explicit incorporation of fire refugia into the planning of such 
strategies is new, yet promising (Krawchuk et al., 2020; Martinez 
et al., 2019; Stevens et al., 2021). For example, locations of poten-
tial refugia might be used to conserve habitat and maintain connec-
tivity for fire- sensitive species (Andrus et al., 2021; Landesmann 
& Morales, 2018; Robinson et al., 2014) or considered as essential 
elements that influence the outcomes of larger fuel treatments 
(Pradhan et al., 2023; Wilkin et al., 2016). After over a century of 
fire exclusion, fire is now regarded as a key tool to promote resil-
ient social- ecological systems (North et al., 2021; Schoennagel 
et al., 2017). Predictions of refugia could also play a crucial role in fire 
management decisions by identifying sites, seasons, and weather 
conditions in which fire might be most effectively utilized.

Here, we use remotely sensed severity data from 1180 fires, 
in combination with gridded biophysical predictors, to better un-
derstand the factors that influence patterns of fire severity in the 
southwestern US. We then use these models to map the locations of 
potential refugia throughout all upland conifer forests in the region. 

Finally, we overlay potential refugia with species- specific maps of 
post- fire conifer recruitment developed in a recent, west- wide syn-
thesis (Davis et al., 2023) to identify refugia that are best aligned 
with environmental conditions that support post- fire recruitment. 
Specifically, we asked: (Q1) What fuel characteristics, topographic fac-
tors, weather conditions, and prior fire effects best predict fire severity 
within large (>404 ha), recent fires (i.e., 2002– 2020) in the southwestern 
US? (Q2) Based on empirical models of fire severity from Q1 and current 
(i.e., 2021) landscape conditions, where are likely locations of unburned 
or low- severity fire areas (i.e., refugia) in southwestern US forests? (Q3) 
Where are environmental conditions most suitable for post- fire tree re-
cruitment of existing forest communities? (Q4) Where are potential fire 
refugia most likely to support post- fire tree recruitment? Answering 
these questions will help to predict fire- driven forest transforma-
tions in a climatically vulnerable region and an era of accelerating 
fire activity.

2  |  METHODS

2.1  |  Study area, climate, and vegetation

Our study area included upland conifer forest ecosystems of the 
southwestern US, within EPA Level III Ecoregions 19, 21, 23, and 
79 (Figure 2). Climate in the study area is generally semi- arid and 
continental, with maximum July temperatures from 15.9 to 34.5°C 
(mean = 24.6°C), January minimum temperatures from −21.3 to 3.6°C 
(mean = −10.4°C), and total precipitation from 231 to 1918 mm year−1 
(mean = 637 mm year−1) (PRISM Climate Group, Oregon State Uni-
versity, 2022). Average temperatures decline and precipitation lev-
els increase with both elevation and latitude. The North American 
monsoon (i.e., rainfall from July to September) provides 7.6%– 59.3% 
(mean = 31.5%) of annual precipitation, with higher percentages in 
the southern and eastern portions of the study area.

Typical tree species in the study area include Douglas- fir 
(Pseudotsuga menziesii var. glauca [Mayr] Franco), Engelmann spruce 
(Picea engelmannii var. engelmannii Parry ex Engelm. and var. mexi-
cana [Martínez] Silba; also called Mexican spruce), lodgepole pine 
(Pinus contorta var. latifolia Engelm. ex S. Watson), ponderosa pine 
(Pinus ponderosa var. scopulorum Engelm.), subalpine fir (Abies la-
siocarpa var. lasiocarpa [Hook.] Nutt. and var. arizonica [Merriam] 
Lemmon; also called corkbark fir), and white fir (Abies concolor var. 
concolor [Gordon & Glend.] Lindl. ex Hildebr). Though other trees are 
also present, these species comprise 72.9% of the total tree basal 
area throughout our study area (Wilson et al., 2013) and are those 
for which post- fire recruitment data were most widely available 
(Davis et al., 2023). Thus, we focused on forests including at least 
one of these species for our analyses (Little, 1971; Rollins, 2009; 
Wilson et al., 2013). The relative dominance of these species var-
ies across abiotic gradients (Figures S3.2– S3.7), with pine- oak (i.e., 
Quercus spp.) forests and pure stands of ponderosa pine occupying 
the driest sites, often intergrading with Douglas- fir and white fir in 
wetter areas. Lodgepole pine is commonly found at intermediate 
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to high elevations at the northern end of the study area, typically 
forming even- aged cohorts that established following severe fires or 
extensive logging activity in the past 200 years (Sibold et al., 2006). 
Engelmann spruce and subalpine fir often co- dominate at higher ele-
vations (O'Connor et al., 2017; Peet, 1981; Veblen, 1986).

These tree species have a range of strategies to persist in the fire- 
prone southwestern US (Appendix S1). Due to thick bark, relatively 
deep roots, and an open branch structure, lower- elevation species 
(e.g., ponderosa pine and Douglas- fir) are typically more resistant to 
fire than are high- elevation species (e.g., Engelmann spruce and sub-
alpine fir) that occupy wetter sites with infrequent fire occurrence 
(Baker, 2009; Stevens et al., 2020). Lodgepole pine has low to moder-
ate fire resistance but can quickly recolonize areas following severe 
fire due to partial serotiny, where closed cones found on some indi-
viduals open following fire and can trigger prolific tree regeneration 
(Tinker et al., 1994; Turner et al., 2007). On average, lodgepole pine 

(<10 years), Engelmann spruce (25 years), and subalpine fir (30 years) 
can become reproductively mature early in life under open, post- 
fire conditions (Andrus et al., 2020; Turner et al., 2007), whereas 
Douglas- fir (40 years) and ponderosa pine (50 years) may take longer 
to bear cones (Rodman, Veblen, et al., 2021). Though wind, water, 
and animals all play important roles in post- fire seed dispersal, most 
seedling establishment for these species occurs close to reproduc-
tively mature trees (Table 1).

2.2  |  Overview of analyses

To answer our research questions, we performed analyses in the fol-
lowing steps (detailed descriptions of each step are provided in sub-
sections below). First, we developed statistical models to describe 
relationships between remotely sensed patterns of fire severity and 
biophysical predictors within past fire events (Q1). We then used these 
models with regionwide data to map potential fire severity through-
out upland conifer forests in the study area and identify sites that 
were most likely to be unburned or burn at low severity (i.e., refugia) 
under different weather conditions (Q2). Next, we developed maps 
of environmental suitability for post- fire recruitment throughout the 
study area using empirical models for each of the six most common 
conifer species (Q3). Finally, we overlaid maps of potential refugia 
from Q2 and potential recruitment from Q3 to identify refugia that 
were most likely to facilitate recruitment of existing tree species into 
adjacent areas (Q4). Information from past fires (Q1) was restricted 
to upland conifer forests— as defined by LANDFIRE Environmental 
Site Potential data (Rollins, 2009), species range maps (Little, 1971), 
and >1 m2 ha−1 combined basal area of our focal tree species early 
in the study period (Wilson et al., 2013)— that burned from 2002 to 
2020, with ≥10% tree canopy cover in the year before the fire (Jones 
et al., 2018). Regionwide predictive maps (Q2– Q4) were similarly re-
stricted to upland conifer forests, but also constrained to areas with 
≥10% canopy cover in 2021, for a total mapped area of 99,428 km2.

2.3  |  Q1, fire severity data

We obtained perimeters for all large (>404 ha) fire events that oc-
curred from 1985 to 2020 from the Monitoring Trends in Burn Se-
verity (MTBS) program (Eidenshink et al., 2007). While our analyses 
focused on fires that occurred from 2002 to 2020 (n = 1180), earlier 
fires (i.e., 1985– 2001; n = 634) were included to describe prior fire 
effects following Downing et al. (2021). The majority of the 1180 
recent fires in our study area were wildfires (75.1% of all events; 
91.1% of the total burned area), with the remaining events classified 
as prescribed fire (17.7% of events; 5.5% of area), resource objective 
fire (2.5% of events; 1.9% of area), or unknown (4.7% of events; 1.6% 
of area). To describe fire activity under a range of weather condi-
tions and suppression strategies, thereby ensuring a representative 
sample for use in predictive models, we retained all incident types in 
our analyses. To quantify fire severity at a 30- m resolution in each 

F I G U R E  2  Study area, included EPA Level III ecoregions 
(EPA, 2021), and the locations of large (>404 ha) fire events that 
occurred from 1985 to 2020 (Eidenshink et al., 2007) throughout 
the southwestern US.



    |  5RODMAN et al.

event, we developed raster maps of the bias- corrected composite 
burn index (CBI) following Parks, Holsinger, et al. (2019). This pro-
cedure maps CBI within each fire using statistical models developed 
from field- derived CBI data collected in 263 fires across a range 
of forest types in North America; predictors in this model include 
Landsat- derived spectral indices, latitude, and 1981– 2010 annual 
average climatic water deficit. The CBI, a continuous index ranging 0 
(unburned) to 3 (highest severity) (Key & Benson, 2006), was treated 
as a response variable in subsequent statistical analyses.

2.4  |  Q1 and Q2, predictors of fire severity

To characterize the influence of fuels on fire severity, we used vegeta-
tion conditions in the year prior to a fire from the Rangeland Analysis 
Platform (RAP) (Jones et al., 2018) (Table 2). We summarized RAP data 
within each 30- m pixel, as well as a 910- m radius surrounding each 
pixel, an extent that approximates the median daily spread rate in re-
cent large fire events throughout the western US (Coop et al., 2022). 
Within each fire perimeter, we used RAP to describe pre- fire canopy 
cover, the mean and coefficient of variation of canopy cover in the sur-
rounding area (i.e., 910- m radius), the distance (m) to the closest pixel 
with less than 10% canopy cover (i.e., nonforest), and pre- fire shrub 
cover. We described forest composition using the Fire Resistance 
Score (FRS), a community- weighted index that uses measured species 
traits from western US conifers (e.g., flammability, bark thickness) to 
estimate fire resistance of a community (Stevens et al., 2020).

To describe differing aspects of topography that might influence 
fire severity (Table 2), we used ca. 10- m digital elevation models 
(USGS, 2021) to calculate slope angle, roughness (i.e., the standard 
deviation of elevation), topographic position (Weiss, 2001), and 
mean curvature (Safanelli et al., 2020). We also obtained the con-
tinuous heat load index from Theobald et al. (2015). For roughness 
and topographic position, we used a 910- m radius circular window 

to describe neighborhood effects. For curvature, we used a 90- m 
window to describe local terrain shape.

To quantify the effects of fire weather on severity, we developed 
two metrics to describe daily weather conditions and fire seasonality. 
We first calculated the Severe Fire Danger Index (SFDI), a derived 
metric that combines different elements of fire weather and flamma-
bility (i.e., daily temperature, humidity, wind speed, and fuel moisture) 
into a single daily value (Jolly et al., 2019) (Table 2). We obtained val-
ues of Energy Release Component and Burning Index, components 
of SFDI, from the GridMET database (Abatzoglou, 2013). Daily SFDI 
was developed as a continuous index ranging from 2 (least extreme 
fire weather) to 200 (most extreme fire weather), with values rela-
tive to the long- term climatology (all days 1979– 2020) within each 
4- km pixel. Following Parks et al. (2014), we developed 30- m date of 
burning (DOB) maps for each fire by interpolating moderate resolu-
tion imaging spectroradiometer (MODIS) and visible infrared imaging 
radiometer suite (VIIRS) active fire detections. We assigned fire de-
tections occurring between midnight and 6 am to the previous day 
following Coop et al. (2022). We used DOB maps to extract daily 
SFDI values for each burned 30- m pixel and to quantify the poten-
tial effects of seasonality on fire severity. FRS (250 m), topography 
(10 m), and SFDI (4 km) data were resampled and aligned to 30- m fire 
severity grids using “average” resampling, which limits changes in 
data values (GDAL— Geospatial Data Abstraction Library, 2020). For 
areas with two overlapping fire events in the same 30- m pixel, we 
extracted severity in the initial event as well as time between fires to 
describe prior fire effects (Table 2).

2.5  |  Q1 and Q2, predicting and mapping 
fire severity

We developed two Random Forest (RF) (Breiman, 2001) models to 
predict fire severity in 30- m pixels that were within (1) a single large 

TA B L E  1  Descriptions of the six focal tree species in this study, including elevational zone in which they are most commonly found, 
fire resistance (i.e., the ability of trees to tolerate and survive fire), serotiny (i.e., fire- adapted canopy seedbanks), and post- fire dispersal 
distances.

Species Elevational range
Fire 
resistance Serotiny Typical dispersal distance

Douglas- fir (15.1%) Low to Intermediate 0.49 No <120 m from live trees (Kemp et al., 2016; McCaughey 
et al., 1986; Rodman, Veblen, Chapman, et al., 2020)

Engelmann spruce (20.0%) High 0.26 No <150 m from live trees (Gill et al., 2020; McCaughey 
et al., 1986)

Ponderosa pine (38.5%) Low to Intermediate 0.77 No <90 m from live trees (Chambers et al., 2016; Kemp 
et al., 2016; McCaughey et al., 1986)

Lodgepole pine (16.1%) Intermediate to High 0.39 Partial (Tinker 
et al., 1994)

<60 m of live (non- serotinous) or recently burned 
(serotinous) trees (Gill et al., 2020; Kemp 
et al., 2016; McCaughey et al., 1986)

Subalpine fir (7.1%) High 0.31 No <150 m from live trees (Gill et al., 2020; McCaughey 
et al., 1986)

White fir (3.2%) Low to Intermediate 0.43 No <150 m from live trees (McCaughey et al., 1986)

Note: Fire resistance scores range from 0 (lowest fire resistance) to 1 (highest fire resistance) based on flammability and fire- adaptive traits (Stevens 
et al., 2020). Percentages of the study area dominated by each species (Wilson et al., 2013) are provided in parentheses after species names.
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TA B L E  2  List of spatial datasets tested to predict fire severity during large recent fire events in the southwestern US, original data 
resolution, methods of calculation, and their rationale for inclusion.

Category Variable
Spatial/temporal 
resolution Methods Rationale

Fuels Local Canopy 
Cover

30 m/Annual Percent forest cover in a 30- m pixel 
in the year before fire occurrence 
(Jones et al., 2018)

Local forest structure influences fuel availability 
and crowning potential (Stephens et al., 2009)

Landscape 
Canopy Cover

30 m/Annual Mean forest cover within a 910- m radius 
surrounding a pixel in the year before 
the fire (Jones et al., 2018)

As a contagious process, fire severity and spread 
are influenced by forest structure in the 
surrounding landscape (Finney, 2001)

Landscape 
Canopy 
Variation

30 m/Annual Standard deviation of forest cover 
within a 910- m radius surrounding 
a pixel in the year before the fire 
(Jones et al., 2018)

Heterogeneous forest conditions on local to 
landscape scales may influence fire severity 
by breaking up canopy fuel continuity (Koontz 
et al., 2020; Reynolds et al., 2013)

Distance to 
Treeless Area

30 m/Annual Distance from a given pixel to the 
closest pixel with less than 10% 
canopy cover (Jones et al., 2018)

Proximity to meadows or open areas may reduce 
the potential for tree mortality during fire 
(Chapman et al., 2020)

Shrub Cover 30 m/Annual Percent shrub cover in a 30- m pixel 
in the year before the fire (Jones 
et al., 2018)

Flammable shrubs can influence fuel complexes 
and the potential for tree survival during fire 
(Coppoletta et al., 2016; Paritsis et al., 2015)

Fire Resistance 
Score (FRS)

250 m/Time- 
Invariant

Relative fire resistance of a forest 
community based on measured 
species traits (e.g., bark thickness, 
flammability) (Stevens et al., 2020)

Tree species range widely in fire resistance and 
have differential susceptibility under similar 
burning conditions (Baker, 2009; Stevens 
et al., 2020)

Topography Slope 10 m/Time- 
Invariant

Slope angle of a pixel, in degrees 
based on digital elevation model 
(USGS, 2021)

Slope angle influences fire spread rates through 
convective pre- heating, with lower severity 
expected on flat slopes (Rothermel, 1972)

Terrain 
Roughness

10 m/Time- 
Invariant

The standard deviation of elevation 
(USGS, 2021) in a 910- m radius 
surrounding each pixel

Areas with high roughness are more often 
characterized by infrequent or mixed- severity 
fire regimes (Stambaugh & Guyette, 2008)

Topographic 
Position

10 m/Time- 
Invariant

The elevation of a pixel minus the 
mean elevation in a 910- m radius 
surrounding area (Weiss, 2001)

Ridgetops are often prone to high- severity fire, 
whereas valley bottoms are commonly fire 
skips (Estes et al., 2017; Meigs et al., 2020)

Heat Load 10 m/Time- 
Invariant

An index of terrain- driven solar heating, 
which combines slope, aspect, and 
latitude (Theobald et al., 2015)

Aspect can influence vegetation types and fuel 
moisture, helping to form local refugia (Camp 
et al., 1997)

Terrain Curvature 10 m/Time- 
Invariant

Mean concavity/convexity of a local 
neighborhood along axes parallel and 
perpendicular to the slope (Safanelli 
et al., 2020)

Local slope curvature influences soil moisture 
and exposure, which have the potential to 
influence fire severity (Bigler et al., 2005; 
Viedma et al., 2015)

Weather Date of Burning 
(DOB)

30 m/Daily Calculated using interpolation of thermal 
anomalies from Moderate Resolution 
Imaging Spectroradiometer (MODIS) 
and Visible Infrared Imaging 
Radiometer Suite (VIIRS) active fire 
detections following (Parks, 2014)

The season of fire occurrence is related to 
both weather and the phenology of plant 
communities, which may influence fire 
severity (Miller et al., 2019; Ritter et al., 2023)

Severe Fire 
Danger Index 
(SFDI)

30 m/Daily Describes weather conditions and fuel 
moisture during the burn date in a 
pixel, relative to the long- term (i.e., 
1979– 2020) climatology at a site 
(Jolly et al., 2019)

Fire weather is a key driver of fire behavior, with 
extreme weather sometimes overriding the 
influence of local fuels and terrain (Collins 
et al., 2019; Krawchuk et al., 2016)

Prior Fire Time Since Fire 30 m/Annual The number of years since the last 
recorded fire in a pixel (Eidenshink 
et al., 2007)

The time since last fire can either enhance or 
buffer communities against fire through 
positive or negative fire feedbacks (Buma 
et al., 2020; Kitzberger et al., 2016)

Prior Composite 
Burn Index

30 m/Annual The severity of the last recorded fire in 
a pixel following Parks, Holsinger, 
et al. (2019)

Prior fire severity can enhance or buffer 
subsequent fire severity depending on 
fuel profiles and flammability (Coppoletta 
et al., 2016; Tepley et al., 2018)
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fire event (hereafter ‘one- fire’ model), or (2) in two large fire events 
(hereafter ‘reburn’ model). In the one- fire model, we considered 
pixels that were located within the boundary of one fire perimeter 
from 2002 to 2020, with no other recorded fires, and used potential 
predictors related to fuels, topography, and weather. In the reburn 
model, we considered pixels within exactly two fires— at least one 
fire from 2002 to 2020 and one preceding fire as early as 1985— 
and used predictors related to fuels, topography, weather, and prior 
fire effects. Too few areas were within the intersections of three 
or more fires in our study area and timeframe (188,815 ha; 3.7% 
of total fire area) to develop a generalizable model for areas with 
multiple reburns.

To obtain training data for each RF model, we used a stratified 
sampling approach to extract fire severity and biophysical pre-
dictors at point locations throughout the study area. Our strata 
were based on fire ID, ecoregion, fire severity (unburned or low 
[CBI < 1.25], moderate [1.25 ≤ CBI < 2.25], or high [CBI ≥ 2.25]; Miller 
& Thode, 2007), and community fire resistance (low [FRS < 33rd 
percentile], moderate [FRS ≥33rd and <66th percentile] and high 
[FRS ≥66th percentile]). While we attempted to maintain a bal-
anced sample across strata, some strata were so uncommon (e.g., 
low FRS in fires that primarily burned in ponderosa pine) that the 
overall sample is unbalanced, though it is broadly representative 
of burned areas throughout the study area. To limit the effects of 
fires for which we had no data on prior severity, we excluded areas 
that burned in 1984 (preceding the time period of our CBI maps), in 
fire events that were too small to be included in the MTBS dataset 
(e.g., within NIFC fire perimeters <404 ha; NIFC, 2022) or with more 
than two fire occurrences since 1985. We also restricted sampling 
to upland conifer forests with at least 10% canopy cover in the year 
before the fire. We extracted separate samples to inform each RF 
model, with 36,227 points (0.1% sample) from 547 fire events in 
one- fire areas, and 20,769 points (0.3% sample) from 481 unique 
combinations of fires in reburn areas. Though we did not use a 
minimum spacing between sampled points, we used spatial cross- 
validation to limit the effects of spatial autocorrelation on variable 
selection and accuracy assessment (see below).

Using sampled data, we fit RF models of fire severity using the 
‘ranger’ (Wright & Ziegler, 2017) and ‘spatialRF’ (Benito, 2021) pack-
ages in R (R Core Team, 2021). These data showed no evidence of 
multicollinearity of predictors based on a variance inflation factor 
cutoff of 5. From an initial set of predictors (Table 2), we selected 
final predictors for each RF model using a two- stage variable se-
lection approach. First, we used recursive feature elimination to 
remove variables with low relative importance and little influence 
on overall predictive accuracy (Kuhn et al., 2019). Next, we used 
30- fold spatially stratified cross- validation (Benito, 2021) to re-
move any variables that reduced model accuracy when predicting 
to new fires and areas, thereby ensuring generalizable models for 
regionwide predictions (Meyer et al., 2019). After identifying final 
predictor variables, we tuned models using spatially stratified cross- 
validation to optimize the number of predictors to select at each 

tree split (i.e., ‘mtry’), and the number of samples included in each 
terminal node (i.e., ‘min.node.size’). To summarize the effects of final 
variables in each model, we calculated relative variable importance 
(i.e., the permutation- based mean decrease in accuracy statistic, 
scaled to sum to 100) (Wright & Ziegler, 2017) and developed accu-
mulated local effects plots, which illustrate the effect of each vari-
able on predicted values of the response (Molnar et al., 2018). We 
summarized model accuracy using Pearson's correlation coefficient 
(r) and the root- mean- square error between observed and predicted 
values of fire severity in (1) the out- of- bag dataset created during 
model fitting and (2) in 30- fold spatially stratified cross validation. 
Because RF regression predictions can be biased towards the mean 
of the response variable (Belitz & Stackelberg, 2021), we applied a 
bias correction to RF- predicted values following Rodman, Andrus, 
et al. (2021) (Appendix S2).

To map potential fire refugia throughout upland conifer forests 
in the study area, we used final RF models to develop 30- m pre-
dictions of fire severity based on topography, 2021 fuels, and mod-
erate and severe fire weather scenarios. We defined moderate fire 
weather as having an SFDI value of 150 (i.e., the 75th percentile of 
daily weather in a pixel) and a burn date of May 1st. We defined 
severe fire weather as an SFDI value of 198 (i.e., 99th percentile of 
daily weather in a pixel) and a burn date of July 1st, spanning the 
range of conditions under which large fires typically burn in our 
study area. For areas without any recorded fires from 1985 to 2020 
in the MTBS dataset, we predicted fire severity using the one- fire 
model, and for areas with at least one prior fire event (i.e., 15.7% of 
the final study area), we used the reburn model.

2.6  |  Q3, quantifying environmental suitability for 
recruitment

To describe environmental suitability for the recruitment of existing 
forest communities, we developed a community weighted recruitment 
index (RI) (Appendix S3; Figure S3.1). First, we used statistical models 
from Davis et al. (2023) to make 30- m regionwide predictions of post- 
fire recruitment probability for each of the six focal conifer species 
based on recent (i.e., 2001– 2020) climate, and existing topography. To 
account for the effects of variables unrelated to environmental suit-
ability in our predictions (Table S3.1), we assumed that high- severity 
fire occurred in a given 30- m pixel, but that seed was available fol-
lowing Rodman, Veblen, Battaglia, et al. (2020). Next, we used the 
distance- squared- weighted density metric of Coop et al. (2019) to 
summarize recruitment predictions in the area around each potential 
refugia pixel, with window sizes for each species based on typical dis-
persal distances (Appendix S3; Table 1). Finally, we calculated RI as the 
weighted sum of individual species recruitment maps, with weights 
based on species' relative abundances (Wilson et al., 2013). RI, ranging 
from 0 (poor conditions) to 100 (excellent conditions), is a continuous 
metric that estimates how well a locally resistant fire refugium might 
facilitate tree recruitment in the surrounding landscape.
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2.7  |  Q4, identifying refugia that support conifer 
tree recruitment

To identify refugia with a high potential to facilitate post- fire recruit-
ment, we overlaid maps of predicted fire severity (under moderate 
and severe fire weather, separately) and RI as follows. First, we clas-
sified potential fire refugia as 30- m pixels with predicted fire severity 
of unburned or low in regionwide maps (i.e., CBI values <1.25; Miller 
& Thode, 2007). Next, because RI is a new metric with no empirical 
threshold of what constitutes high or low values, we used k- means 
cluster analysis of all 30- m pixels in the study area to split RI values 
into two relatively distinct groups (low [<46] and high [≥46]). We then 
classified pixels as “refugia with high recruitment” (i.e., CBI < 1.25 and 
RI ≥ 46), “refugia with low recruitment” (i.e., CBI < 1.25 and RI < 46), or 
“non- refugia” (i.e., CBI ≥ 1.25) under each fire weather scenario.

2.8  |  Q2– Q4, quantifying uncertainty in 
predictions of fire severity, recruitment, and refugia

Major uncertainty exists in predicting forest ecosystem dynamics 
across regional extents. To quantify and map this uncertainty, we de-
veloped pointwise prediction intervals (i.e., mean ± 1 standard error 
of prediction) using models of fire severity and species- specific post- 
fire recruitment probability. Using these prediction intervals, we 
then propagated uncertainty throughout the same processing steps 
involved in developing maps of potential refugia under “upper” (i.e., 
lower than expected fire severity and higher than expected recruit-
ment) and “lower” scenarios (i.e., higher than expected fire severity 
and lower than expected recruitment). We present abbreviated re-
sults of these uncertainty analyses in the main text, and additional 
analyses and figures in Appendix S4.

F I G U R E  3  Results of the random forest model predicting fire severity (CBI; Composite Burn Index) in locations that burned once in the study 
period. Panel (a) shows the relative importance of predictors included in the final model using the permutation- based mean decrease in accuracy 
statistic. Panels (b– n), sorted by relative importance of each predictor, are accumulated local effect plots showing predicted changes in fire 
severity (y- axis) across the range of each predictor (x- axis), after accounting for the effects of other predictors in the model. Where solid black 
lines are above the dashed line in (b– n), values of a given predictor are associated with a higher fire severity, while values below the dashed line 
indicate a relationship with lower fire severity. Boxplots above panels (b– n) show the range of sampled values for each predictor.
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3  |  RESULTS

3.1 | (Q1) What fuel characteristics, topographic 
factors, weather conditions, and prior fire effects 
best predict fire severity within large (>404 ha), 
recent fires (i.e., 2002– 2020) in the southwestern 
US?

Pre- fire fuels were the most important group of predictors in the 
fire severity models, comprising 38% (one- fire) and 27% (reburn) 
of total variable importance. Fire severity was positively associ-
ated with both local-  and landscape- scale canopy cover, with nota-
ble increases in severity above 30%– 40% cover (Figures 3c,e and 
4g,i). Similarly, distance to nonforest had a positive relationship 

with fire severity, where forests within 100 m of nonforest areas 
had lower fire severity in the one- fire model (Figure 3k), though 
this term was excluded from the reburn model. Canopy cover vari-
ation had a positive relationship with fire severity in each model 
(Figures 3j and 4f). Pre- fire shrub cover had contrasting effects 
on fire severity in the one- fire and reburn models. In the one- fire 
model, low shrub cover was associated with higher fire severity, 
though the relationship was relatively weak (Figure 3l); in the re-
burn model, fire severity increased when shrub cover exceeded 
10% (Figure 4l). The FRS, an indicator of forest community resist-
ance to fire, was non- linearly related to fire severity. In the one- fire 
model, severity was typically greatest with FRS values of 0.4 to 0.6 
(Figure 3g). Low FRS values may be indicative of cold, wet areas 
that are more likely to remain unburned within larger perimeters, 

F I G U R E  4  Results of the Random Forest model predicting fire severity (CBI; Composite Burn Index) in locations that burned twice in the 
study period. Panel (a) shows the relative importance (x- axis) of predictors (y- axis) included in the final model using the permutation- based 
mean decrease in accuracy statistic. Panels (b– n), sorted by relative importance of each predictor, are accumulated local effect plots showing 
predicted changes in fire severity (y- axis) across the range of each predictor (x- axis), after accounting for the effects of other predictors in 
the model. Where solid black lines are above the dashed line in (b– n), values of a given predictor are associated with a higher fire severity, 
while values below the dashed line indicate a relationship with lower fire severity. Boxplots above panels (b– n) show the range of sampled 
values for each predictor.
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whereas high values represent communities composed of thick- 
barked and fire- tolerant conifers.

Overall, topographic predictors accounted for 30% and 27% of 
the total variable importance in the one- fire and reburn models, re-
spectively. Of these predictors, terrain roughness had the strongest 
relationship with severity in each model, with sites located in more 
variable topographic settings tending to burn at higher severity 
(Figures 3d and 4c). Positive values of topographic position (Fig-
ures 3m and 4m) and curvature (Figures 3n and 4n), representing 
ridgetops and outwardly convex slopes, respectively, were also as-
sociated with higher fire severities in each model. Likewise, slopes 
between 10 and 30 degrees tended to burn at higher severity than 
did flat areas or extremely steep slopes (Figures 3i and 4j). Finally, 
southwest- facing slopes (i.e., high heat load values) burned at lower 
severities than did northeast- facing slopes (Figures 3h and 4k).

Weather variables were also key drivers of severity in recent 
fires throughout our study area, accounting for 24% and 27% of 
total variable importance in the one- fire and reburn models, re-
spectively (Figures 3 and 4). SFDI was the top individual predictor 
of fire severity in each model (Figures 3a and 4a), and severity 
increased substantially when SFDI exceeded the 90th percentile 
at a given site (i.e., >180) (Figures 3b and 4b). Likewise, DOB was 
among the best predictors of fire severity, ranking fifth (one- fire) 
and third (reburn) in terms of relative importance in each model 
(Figures 3a and 4a). Spring- season fires (i.e., prior to June 1st; 
DOB < 151) typically burned at lower severities than did summer 
or fall fires (Figures 3f and 4d).

Prior fire effects accounted for 19% of total variable impor-
tance in the reburn model (Figure 4a). Time since fire was the 
highest ranking predictor in this group, where fire severity was 
reduced for up to 15 years after an initial fire event (Figure 4e). 
Prior CBI had a complex non- linear effect on fire severity, where 
low-  to moderate- severity events (CBI < 1.5) had the greatest 
buffering effect (Figure 4h). Though time since fire and prior CBI 
were related to severity in reburns, sampled areas within reburns 
had lower severities overall (mean CBI = 0.96) than did first- entry 
fires (mean CBI = 1.45), indicating a consistent buffering effect 
of past fire. Final one- fire and reburn models performed well in 
cross- validation, and were deemed adequate for regionwide pre-
dictions (Table 3).

3.2  |  (Q2) Based on empirical models of fire 
severity from Q1 and current (i.e., 2021) conditions, 
where are predicted locations refugia?

Predicted fire severity differed widely between the two weather 
scenarios, with mean CBI values of 0.94 under moderate weather 
(Figure 5a), as compared to 1.83 under extreme weather (Figure 5b). 
Overall, predicted severities were highest in the northern portion 
of the study area, and lowest in the southern portion, likely due to 
more abundant past fire activity (Figure 2) and lower forest cover 
in the South (Figure 5; Table S4.1). Potential refugia (i.e., areas with 

predicted CBI < 1.25) comprised 67.6% of forests in the study area 
under moderate weather conditions, and 18.1% under extreme 
weather. Recent (i.e., 1985– 2020) large fires played an important 
role in the predicted locations of refugia. Under moderate weather, 
98.4% of areas within recent fires were predicted refugia, as com-
pared to 61.9% of recently unburned areas. Likewise, under extreme 
weather, 44.4% of areas within recent fires were identified as po-
tential refugia, as compared to just 13.2% of unburned areas. There 
was notable uncertainty in predictive maps of fire severity, likely 
due to the stochastic factors and fine- scale processes influencing 
fire behavior in our training data, as well as the high- variance nature 
of base learners (i.e., individual trees) within RF models (Figure S4.1; 
Table S4.1).

3.3  |  (Q3) Where are environmental conditions 
most suitable for post- fire tree recruitment of current 
tree species?

Values of the RI, which describes the extent to which surviving trees 
might facilitate post- fire recruitment in the surrounding landscape, also 
varied across the study area (Figure 6). In general, recruitment prob-
abilities were highest at intermediate to wet portions of each species' 
range, such as at higher elevations and latitudes (Figures S3.2– S3.7). 
Indeed, mean RI values were highest and had comparatively greater 
certainty in the northern ecoregions (Table S4.1). Mean RI across the 
study area was 37.9, with 39.7% of the total area classified as having 
high recruitment potential (RI ≥ 46). In comparison to maps of fire se-
verity, there was greater certainty in predictions of recruitment prob-
ability and RI, but uncertainty was relatively high in the Arizona/New 
Mexico Mountains, where recruitment conditions are marginal for the 
dominant tree species (Figures S4.2– S4.8; Table S4.1).

3.4  |  (Q4) Where are fire refugia most likely to 
support post- fire tree recruitment?

Refugia with high recruitment (i.e., CBI < 1.25 and RI ≥ 46)— sites 
that were predicted to resist fire and also support recruitment into 

TA B L E  3  Accuracy metrics from final Random Forest models 
used to predict fire severity in forests of the southwestern US that 
experienced one (i.e., one- fire) and two (i.e., reburn) large fires.

Model

Accuracy metric

Pearson's r RMSE

One- fire 0.58 (0.38) 0.78 (0.85)

Reburn 0.69 (0.46) 0.58 (0.75)

Note: Accuracy metrics were calculated on out- of- bag data during 
model fitting and in 30- fold spatially- stratified cross- validation, 
which are presented before parentheses and inside of parentheses, 
respectively.
Abbreviation: RMSE, root- mean- square error.
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adjacent areas— were located in 23.2% of the study area under mod-
erate weather conditions (Figure 7a) as opposed to just 6.4% under 
extreme weather (Figure 7b). Likewise, refugia with low recruitment 
(i.e., CBI < 1.25 and RI < 46) were more widespread under moder-
ate weather (44.4% of the study area) than under extreme weather 
(11.7%) throughout the study area. Though southern ecoregions 
(i.e., Arizona/New Mexico Mountains and Madrean Archipelago) 
had lower average RIs when compared to northern ecoregions, 
they were also predicted to burn at lower severity (Figures 5 and 
6; Table S4.1). In combination, these factors led to slightly higher 
percentages of predicted refugia in the southern ecoregions, par-
ticularly under extreme fire weather (Figure 7; Table 4). However, 
predictions of refugia had relatively high uncertainty across the 
study area, primarily due to uncertainty in predictions of fire sever-
ity (Figure S4.9; Table S4.1).

4  |  DISCUSSION

Forests worldwide are becoming increasingly vulnerable to 
fire- driven transformations (Hartmann et al., 2022; Seidl & 
Turner, 2022). Indeed, shifting fire regimes, combined with lim-
ited post- fire tree recruitment, may reshape the coniferous for-
ests that are emblematic of many western US landscapes (Coop 
et al., 2020). The present study contributes to the understanding 

of fire- driven transformations by helping to identify forested sites 
across the southwestern US that may be locally resistant to fire 
(i.e., refugia) and facilitate post- fire tree recruitment in the sur-
rounding landscape. This is the first empirical study to predict 
both fire severity and post- fire recruitment across a broad range 
of forest types and ecoregions, helping to assess vulnerability 
to fire- driven forest transformations across a diversity of land-
scapes. Our results demonstrate that (1) fuels, topography, and 
weather were all useful predictors of fire severity throughout the 
study area, (2) initial fires can meaningfully reduce the severity of 
reburns, with the strongest effects when the initial fire occurred 
at low or moderate severity and reburns occurred within 15 years, 
(3) post- fire recruitment potential varied according to community 
composition and the environmental tolerances of individual tree 
species, but was generally greatest in the northern ecoregions, 
and (4) refugia with a high potential to support recruitment rep-
resented a relatively small percentage of the study area, but these 
areas are likely to play an important role in forest ecosystem dy-
namics over upcoming decades.

4.1  |  Factors influencing fire severity

Fuels played a critical role in the severity of recent large fires in our 
study area, and such information may help to anticipate and mitigate 

F I G U R E  5  Predicted fire severity (CBI; Composite Burn Index) throughout upland conifer forests of the southwestern US based on 2021 
fuels conditions, existing topography, and two fire weather scenarios. Moderate (a) fire weather conditions were based on 75th percentile 
daily weather (i.e., Severe Fire Danger Index [SFDI] value of 150) and a burn date of May 1. Extreme (b) fire weather conditions were based 
on 99th percentile of daily weather (i.e., SFDI of 198) and a burn date of July 1. Boxplots above each panel show the distribution of predicted 
fire severity values across the study area. CBI values <1.25 were predicted to be unburned or low- severity areas (i.e., refugia).
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the effects of climate- driven forest transformations. Forests below 
40% canopy cover and those within 100 m of non- forest areas (e.g., 
meadows) were most likely to be unburned or burn at low severity, 
suggesting that low- density forests interspersed with open areas are 
particularly resistant to fire. These findings align with prior research 
illustrating the importance of pre- fire vegetation (Parks et al., 2018; 
Taylor et al., 2021) and low- density savannas (Chapman et al., 2020) in 
shaping landscape- scale patterns of fire severity. Fuels are one side of 
the fire behavior triangle (i.e., fuels, topography, and weather) that can 
be most feasibly altered by humans, using activities such as mechanical 
thinning and/or prescribed fire. These management activities can be 
utilized for a range of purposes, including the protection of communi-
ties and infrastructure or the restoration of degraded systems (Sch-
oennagel et al., 2017; Stephens et al., 2021). Dense stand conditions 
and high- severity fire are an inherent component of some southwest-
ern US ecosystems, such as cold/mesic forests found at high elevations 
(Baker & Veblen, 1990; Romme & Knight, 1981), where fuels reduc-
tion can be valuable to protect important human infrastructure (e.g., 
reservoirs, houses), but is not necessarily congruent with restoration 

objectives (Schoennagel et al., 2004). In contrast, ponderosa pine- 
dominated forests comprise roughly 39% of our study area (Wilson 
et al., 2013) and are where strategic thinning and burning are more 
likely to accomplish both restoration and fuels reduction objectives 
(Stephens et al., 2021). Thus, while active management to reduce fuels 
may help to buffer some ecosystems from fire- driven forest transfor-
mations in the near term, such activities must also be considered in the 
context of both societal needs and the natural disturbance regime of 
the system (Allen et al., 2002).

Topography is an important determinant of both vegetation pat-
terns and fire behavior, and topographic variation was linked to fire 
severity across our study area. Fire severity increased with terrain 
roughness and topographic position, peaking on moderately steep 
slopes, ridges, and areas with rugged topography, findings that are 
consistent with prior studies in the western US (Camp et al., 1997; 
Chapman et al., 2020; Krawchuk et al., 2016). Valley bottoms and topo-
graphic concavities afforded the greatest reductions in fire severity, 
where fire spread and severity may be diminished by reduced wind 
speeds, shallower slopes, higher levels of soil moisture, and cooler tem-
peratures associated with thermal inversions and smoke (Bradstock 
et al., 2010; Downing et al., 2021; Romme & Knight, 1981). Indeed, the 
importance of such settings in moderating fire severity and promoting 
fire refugia has been demonstrated over a wide range of ecosystems 
and spatiotemporal scales (Collins et al., 2012; Haire et al., 2017; Leon-
ard et al., 2014; Robinson et al., 2014). Heat load was also a useful pre-
dictor of fire severity, with southwest- facing aspects showing a greater 
potential for refugia. In our study area, southwesterly slopes tend to be 
warmer and drier, with more open canopies and grassy understories 
that can support frequent, lower- severity fire (Margolis et al., 2022). 
As highlighted by our uncertainty analyses (Appendix S4) and prior re-
search (Kolden et al., 2017), the locations of surviving trees after any 
given fire may be heavily shaped by stochastic processes; however, 
refugia that persist through multiple fire events are increasingly likely 
to owe their existence to deterministic processes including protection 
afforded by topographic factors that impede crown fire transition and 
spread (Downing et al., 2021). Accordingly, associations between refu-
gia and topography may become both stronger and more predictable 
as more fires eliminate susceptible forest patches from the landscape, 
and over longer time frames as fire- sensitive vegetation becomes re-
stricted to the most protected locations (Krawchuk et al., 2020; Wood 
et al., 2011).

Daily fire weather and the DOB were two of the strongest 
individual predictors of fire severity in our study area, and we 
found that areas that burned under moderate weather conditions 
(SFDI < 90th percentile) and in the spring season (DOB < 151) were 
most often associated with refugia. These findings were unrelated 
to differences in fire incident types among seasons. For example, 
prescribed fires and resource objective fires, which typically burn 
at lower severities than wildfires (Huffman et al., 2017), repre-
sented 12.5% of all fire events in the summer and fall (DOB ≥ 151) 
as compared to just 5.5% of events in the spring (DOB < 151) 
(Eidenshink et al., 2007). Fire weather has been a strong pre-
dictor of severity and the presence of refugia across a diversity 

F I G U R E  6  Predicted values of the recruitment index (RI) 
throughout upland conifer forests of the southwestern US, 
with higher values indicating a greater potential for post- fire 
recruitment. Boxplot at the top shows the distribution of predicted 
RI values across the study area.
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of ecosystems, from the southern Rocky Mountains (Chapman 
et al., 2020) to the Pacific Northwest US (Krawchuk et al., 2016; 
Meigs et al., 2020; Taylor et al., 2021) and southeastern Australia 
(Collins et al., 2019). While there has been substantial research 
regarding fire weather, comparatively little is known about the 
broad- scale relationships between seasonality and fire severity. 

Still, one observational study of prescribed fire suggests that 
spring burns may be less severe than summer or fall burns in the 
Southwest (Ritter et al., 2023). Though weather and seasonality 
are often related, fire seasonality is likely to have a wide range 
of additional effects on plant communities due to intra- annual 
differences in physiological and demographic processes (Miller 

Ecoregion

Moderate weather Extreme weather

Refugia w/ high 
recruitment

Refugia w/ low 
recruitment

Refugia w/ high 
recruitment

Refugia w/ low 
recruitment

Arizona/New 
Mexico 
Mountains

28.8% (66.8) 64.7% (24.8) 14.1% (68.6) 26.3% (27.4)

Madrean 
Archipelago

6.0% (20.3) 88.4% (53.0) 2.8% (19.7) 23.8% (76.0)

Southern Rocky 
Mountains

18.2% (51.5) 38.5% (39.7) 3.6% (38.1) 6.9% (38.7)

Wasatch and 
Uinta 
Mountains

38.1% (61.5) 32.3% (27.4) 5.4% (52.7) 6.5% (29.8)

Overall 23.2% (56.3) 44.4% (22.4) 6.4% (47.3) 11.7% (35.0)

Note: Numbers in parentheses are estimates of uncertainty (i.e., the range of percentage estimates 
given prediction error in underlying CBI and RI maps) surrounding these percentages, as described 
in Appendix S4 and Figure S4.9, with higher values showing comparatively greater uncertainty.

TA B L E  4  Percentages of 2021 upland 
conifer forests within each EPA Level III 
ecoregion (EPA, 2021) classified as refugia 
with high recruitment (i.e., predicted 
CBI [Composite Burn Index] < 1.25 and 
RI [Recruitment Index] ≥ 46), and refugia 
with low recruitment (i.e., CBI < 1.25 and 
RI < 46), under moderate and extreme fire 
weather scenarios.

F I G U R E  7  Predicted locations of fire refugia throughout upland conifer forests of the southwestern US based on moderate (a) and 
extreme (b) fire weather. “Refugia with high recruitment” are sites with low predicted fire severity and a high recruitment index (i.e., a high 
ability to support conifer forest recruitment into adjacent, severely burned areas), whereas refugia with low recruitment have low predicted 
fire severity and low recruitment indices. “Non- refugia” were predicted to burn at moderate or high fire severity. Stacked bar graphs above 
each panel give the percentage of the study area in each category.
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et al., 2019). Humans modify the fire season through accidental 
ignitions (Balch et al., 2017) and through management activities 
that can target periods of mild weather (e.g., prescribed fire or re-
source objective wildfire) (Huffman et al., 2020; Ryan et al., 2013; 
Young et al., 2020). For example, while summer is the natural wild-
fire season of many western US forests, prescribed and managed 
fires are more commonly used in the shoulder seasons (i.e., spring 
and fall) (Ryan et al., 2013; Young et al., 2020). Our results indicate 
that the expanded use of such strategies under moderate weather 
conditions and in the spring season is likely to promote low-  and 
moderate- severity fire throughout the southwestern US.

4.2  |  Fire as a management tool

Fires are a keystone process in western US conifer forests, which 
have developed fire- adaptive traits over millions of years of evo-
lutionary history (Keeley & Pausas, 2022). After an extended pe-
riod of fire exclusion in many western US landscapes (Hagmann 
et al., 2021), a majority of fires are still actively suppressed due to 
existing government policies and potential risks to infrastructure 
(North et al., 2015). However, there is an increasing recognition 
that restoration of fire is critical for developing climate- resilient 
forests and human communities (North et al., 2021; Schoennagel 
et al., 2017; Young et al., 2020). Our results highlight the impor-
tance of prior fires in reducing subsequent fire severity and pro-
moting refugia, reinforcing the value of fire as a key management 
tool. Indeed, our predictive maps indicated that fire refugia were 
36.4% (under moderate weather) and 31.2% (extreme weather) 
more common across forested areas with at least one large, recent 
fire (i.e., 1985– 2020), as compared to recently unburned forests, 
illustrating that fire plays a critical role in promoting and maintain-
ing fire- resistant landscapes.

Though prior burning may have positive or negative effects on 
fire severity depending on site productivity and the traits of local 
vegetation communities (Coppoletta et al., 2016; Taylor et al., 2021; 
Tepley et al., 2018), the consistent buffering effects of fire ob-
served in the present study are similar to those found across many 
coniferous forests of the Intermountain West (Parks et al., 2014; 
Walker et al., 2018; Yocom et al., 2022). We also found that the 
strongest buffering effects of fires occur within 15 years of initial 
fire occurrence and when initial fires burned at low to moderate 
severity (i.e., CBI < 1.5). A 15- year buffering effect is within the 
range of 1 to 30 years reported by other studies of fire severity and 
spread (Buma et al., 2020; Cansler et al., 2022; Parks et al., 2014; 
Stevens- Rumann et al., 2016; Yocom et al., 2019); beyond this time, 
the effects of the initial fire may wane due to surface fuel accu-
mulation. Likewise, the comparatively greater buffering effects of 
low-  to moderate- severity fire might be attributed to increases in 
coarse wood (Roccaforte et al., 2012; Stevens et al., 2021) or re-
sprouting vegetation following high- severity fire (Coop et al., 2016; 
Guiterman et al., 2018). Indeed, the cover of shrubs, many of which 
are resprouting angiosperms in this region, had a positive effect on 

fire severity in our reburn model. Overall, fires with the greatest 
ability to reduce subsequent fire severity may be those that reduce 
live fuels, but do not lead to substantial increases in coarse wood 
or a strong vegetative resprouting response (Huffman et al., 2020; 
Hunter et al., 2011). Fire will play an increasingly important role 
in forest management throughout the western US over upcom-
ing decades (DellaSala et al., 2022); as such, mitigating fire- driven 
forest transformations will require identifying weather windows, 
topographic settings, and fuels conditions in which both prescribed 
fire and natural ignitions can be most effectively utilized to achieve 
management goals (North et al., 2021).

4.3  |  Constraints on post- fire recruitment

Building off a west- wide synthesis of post- fire regeneration data 
(Davis et al., 2023), we leveraged extensive field inventories (i.e., 
>10,000 individual plots) and species- specific models of recruit-
ment probability to predict forest community- level responses 
to wildfire. Overall, recruitment potential varied regionally, with 
higher average recruitment in Colorado and Utah when compared 
to Arizona and New Mexico. Similarly, other studies have identi-
fied substantial recruitment limitations in dry forests of Arizona 
and New Mexico (Guiterman et al., 2022; Haffey et al., 2018) and 
comparatively greater recruitment to the north and west (Davis 
et al., 2020; Hoecker & Turner, 2022; Vanderhoof et al., 2020), due 
to differences in both environmental conditions and tree species 
composition. Recruitment is a key indicator of forest resilience to 
wildfire, and it is valuable to consider this process in tandem with 
fire severity when assessing vulnerability to forest transformations 
(Coop et al., 2020; Savage et al., 2013). As many western US coni-
fers are obligate seeders, seed availability acts as a primary filter 
of recruitment (Chambers et al., 2016; Kemp et al., 2016; Rodman, 
Veblen, Chapman, et al., 2020). Seed availability can be influenced 
by both high- severity patch sizes and the presence or abundance 
of seed- bearing trees (Chapman et al., 2020; Gill et al., 2020; Ste-
vens et al., 2017). However, even in locations where seeds are 
available, existing forest communities are not always in alignment 
with local environmental conditions (Davis et al., 2019; Rodman, 
Veblen, Chapman, et al., 2020; Stevens- Rumann et al., 2018). Our 
newly developed RI, which combines dispersal characteristics of 
the constituent species and environmental conditions in the sur-
rounding landscape, highlights many of these potential limitations 
to conifer recruitment and helps to identify refugia that can sup-
port post- fire tree recruitment in adjacent, severely- burned areas.

4.4  |  Potential fire refugia across the 
southwestern US

Patterns of fire severity and post- fire recruitment are driven 
by different sets of factors in southwestern US conifer forests, 
but the intersection of these factors has critical implications 
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for the resilience of forest communities (Coop et al., 2020; 
Davis et al., 2020). For example, fire severity is strongly influ-
enced by fuels and daily weather (Cansler et al., 2022; Parks 
et al., 2018), whereas post- fire recruitment is more commonly lim-
ited by seasonal, annual, or average climate conditions of a site 
(Davis et al., 2019; Guz et al., 2021; Rodman, Veblen, Battaglia, 
et al., 2020). Overall, we predicted that 67.6% (under moderate 
weather) and 18.1% (under extreme weather) of the study area 
were potential refugia (i.e., CBI < 1.25), and 39.7% of the study 
area had high recruitment potential. However, when overlay-
ing maps of fire severity and recruitment, just 23.2% (moderate 
weather) and 6.4% (extreme weather) of the study area was refu-
gia with a high potential to support recruitment in the surround-
ing landscape. Though these sites represent a small fraction of 
the region, it is important to note that such areas act as potential 
centers of nucleation and dispersal that can affect a much larger 
area (Coop et al., 2019). Fire refugia also contribute to the mainte-
nance of community components and ecosystem functions, such 
as by providing critical habitat for fire- sensitive plant and animal 
species (Andrus et al., 2021; Downing et al., 2019; Landesmann 
& Morales, 2018; Robinson et al., 2014). These habitat patches, 
nested within larger networks, could be relatively buffered from 
near- term changes in climate and allow for both migration and in- 
situ adaptation in a period of rapid change (Haire et al., 2022; Mo-
relli et al., 2020). Thus, refugia with high recruitment potential are 
disproportionately valuable in conifer forests of the southwestern 
US, a region that is especially vulnerable to fire- driven forest con-
versions (Davis et al., 2020; Parks, Dobrowski, et al., 2019).

Additional research is needed into how management activi-
ties (e.g., mechanical thinning, prescribed fire, resource objective 
fires) might foster and maintain fire refugia in the region (Stevens 
et al., 2021), and how networks of potential refugia might interact 
to facilitate the persistence of fire- sensitive species (e.g., Mexican 
spotted owl; Strix occidentalis lucida) (Jones et al., 2022). Identifying 
the locations and drivers of potential fire refugia, as done in the 
present study, is a first step towards building this new knowledge. 
However, our findings also point unequivocally toward two man-
agement strategies that can support and maintain refugia by re-
ducing the likelihood of severe fire: (1) reducing canopy cover and 
creating heterogeneous fuels conditions using mechanical thinning 
where it is ecologically appropriate and socially acceptable, and 
(2) utilizing additional prescribed and lightning- ignited fires under 
moderate fire weather to mitigate the effects of future fire activity 
under more extreme conditions when suppression is ineffective. 
Where feasible, these activities may help to resist fire- driven eco-
system transformations in portions of the southwestern US.

4.5  |  Study limitations and directions for 
future research

Factors such as serotiny, animal- mediated dispersal, the limited 
extent of reburns in our study area, and uncertainty in predictions 

may complicate models of refugia presented here. Several stud-
ies have found weak or inconsistent relationships between lodge-
pole pine establishment and distances to live trees due to partial 
serotiny in the species (Hoecker & Turner, 2022; Kemp et al., 2016; 
Urza & Sibold, 2017). However, even for lodgepole pine, there is 
concern that severe, short- interval reburns could overwhelm for-
est resilience due to a lack of trees bearing serotinous seeds in 
young post- fire stands (Gill et al., 2020; Turner et al., 2019). Refu-
gia may remain valuable, even for this exceptionally fire- adapted 
species, by buffering trees against the effects of severe, short- 
interval reburns and maintaining available seed sources on the 
landscape. Long- distance dispersal events, likely facilitated by 
animals, have been noted in both montane and subalpine for-
ests throughout the study area (Coop & Schoettle, 2009; Owen 
et al., 2017). Thus, the influence of fire refugia may extend well 
beyond the wind-  and water- driven dispersal distances that we 
considered when calculating RI. Across the Southwest, areas with 
three or more fires were comparatively rare (i.e., 3.7% of the total 
burned area). Multiple reburns at a site may have additive or mul-
tiplicative effects (Downing et al., 2021; Hunter et al., 2011) that 
we could not adequately quantify throughout our study area due 
to the limited sample area. Additional research is needed to bet-
ter understand the interactions of fuels, topography, weather, and 
prior- fire effects in areas with multiple reburns, which are likely 
to become increasingly common in the coming decades. Further, 
though the study period includes some of the driest conditions in 
the last thousand years (Williams et al., 2022), we note that the 
spatial overlap between contemporary forest composition and re-
generation likelihood is expected to contract under future climate, 
and fire activity is likely to continue to increase (Coop et al., 2020; 
Davis et al., 2023). Finally, there was sizable uncertainty in some 
of our predictions, likely due to the stochastic and locally specific 
nature of individual fire behavior (Appendix S4). Some of these 
uncertainties may be unavoidable when working with empirical 
models and broad- scale spatial datasets. However, we hope that 
this work will provide a foundation that future research can build 
upon, as more sophisticated statistical approaches (e.g., deep 
learning) and detailed spatial datasets become increasingly com-
mon in ecological research.

5  |  CONCLUSION

Here, we used empirical models of fire severity and post- fire re-
cruitment, developed from over 1000 unique fire events and 
10,000 post- fire field plots, to identify potential fire refugia across 
ca. 100,000 km2 of forest area throughout the southwestern US. 
Because refugia are relatively buffered from fire- driven ecosys-
tem transformations, they may help to “flatten the curve” during 
a period of rapid environmental change (Krawchuk et al., 2020; 
Morelli et al., 2020). However, these effects are likely to be most 
pronounced in areas where conditions promoting resistance to 
fire align with environmental conditions supporting post- fire tree 
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recruitment, as identified in the present study. Anticipating eco-
logical transformation in this era of uncertainty is challenging, yet 
critical for human adaptation to change (McDowell et al., 2020; 
Seidl & Turner, 2022). For example, potential fire refugia, which 
represent areas of relative stability, may help in outlining pro-
tected habitat networks for fire- sensitive or forest- obligate spe-
cies that require particular forest structural or compositional 
conditions. Likewise, active forest management (e.g., mechanical 
treatments, prescribed fire, resource objective fires, and post- fire 
replanting) may work with the locations of potential refugia to 
help reinforce and expand refugial networks and maintain critical 
ecosystem services provided by forest ecosystems. Importantly, 
this study illustrates that open- canopied forests and fires burn-
ing under moderate weather conditions may promote and main-
tain refugia. Conversely, our results also suggest that aggressive 
suppression strategies which extinguish fires under moderate 
weather conditions will lead to continued increases in fuel accu-
mulation, reduce the potential for fire refugia under more extreme 
conditions in which fires cannot be suppressed, and threaten the 
longer- term sustainability of southwestern US forests. Fire, as a 
dominant terrestrial disturbance (Bowman et al., 2009), will act 
as a major driver of ecological transformations across Earth's 
forests, and refugia will play an integral role in resilience to such 
transformations.
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Supplementary Information 1 

Appendix S1: Summaries of Species Traits for Dominant Conifers in the Study Area 2 

Table S1.1: A summary of typical elevational zones, relative fire resistance, pre-1900s fire 3 

regimes, and plant traits related to fire resistance for each of the six species included in this 4 

study. 5 

Species Elevational 

Range 

Fire 

Resistance 

Score1 

MFRI 

(years)2 

Traits Influencing Fire Resistance/ 

Susceptibility3 

Douglas-fir 

(Pseudotsuga 

menziesii var. glauca 

[Mayr] Franco) 

Low to 

Intermediate 

0.49 5 - 100+ Thin resin-filled bark in younger trees, thin 

corky bark in older trees is offset by low-

growing branches. Shallow lateral roots. 

Mistletoe brooms can lead to fuel 

accumulations and ladder fuels contributing to 

crown fires. 

Engelmann spruce 

(Picea engelmannii 

var. engelmannii 

Parry ex Engelm. 

and var. mexicana 

[Martínez] Silba; 

also called Mexican 

spruce) 

High 0.26 90 - 350+ Thin bark, shallow roots, low-growing 

branches, tendency to grow in dense stands, 

moderately flammable foliage, heavy lichen 

growth. High fuel loading from accumulated 

needles can lead to crown fires. 

Lodgepole pine 

(Pinus contorta var. 

latifolia Engelm. ex 

S. Watson) 

Low to 

Intermediate 

0.39 20 - 200+ Thin bark, but occasionally fire resistant in 

open stands; lichen accumulation on older 

trees. High fuel buildup due to mistletoe, snow 

breakage, windthrow and bark beetles. 

Generally deep rooting system. 

Ponderosa pine 

(Pinus ponderosa 

var. scopulorum 

Engelm.) 

Intermediate 

to High 

0.77 1 - 50+ Open crowns, self-pruning branches, thick and 

relatively non-flammable bark, thick bud scales 

and tight needle bunches, high foliar moisture, 

deep rooting habit. 
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Subalpine fir (Abies 

lasiocarpa var. 

lasiocarpa [Hook.] 

Nutt. and var. 

arizonica [Merriam] 

Lemmon; also called 

corkbark fir 

High 0.31 90 - 350+ Thin bark, shallow roots, low growing 

branches, tendency to grow in dense stands, 

highly flammable foliage, moderate to heavy 

lichen growth. High fuel loads under trees can 

lead to crown fires. 

White fir (Abies 

concolor var. 

concolor [Gordon & 

Glend.] Lindl. ex 

Hildebr) 

Low to 

Intermediate 

0.43 5 - 200+ Thin bark, resin blisters and drooping lower 

branches in young trees; Self pruning and thick 

bark in older trees, offset by heavy lichen 

growth and shallow roots. 

1: Fire resistance scores (FRS) were derived from Stevens et al. (2020), who combined a range of plant traits 6 
related to resistance and flammability into a single numerical value ranging from 0 to 1. Higher values are 7 
indicative of greater fire resistance. 8 

2: Mean fire return intervals were obtained from the USDA Fire Effects Information System (FEIS), summarizing 9 
existing knowledge for each tree species (USDA Forest Service, Fire Effects Information System (FEIS), 2022). 10 

3: Plant traits were summarized from synthesis papers and public data sources (Baker, 2009; Burns & Honkala, 11 
1990; Stevens et al., 2020; USDA Forest Service, Fire Effects Information System (FEIS), 2022). 12 

  13 
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Table S1.2: Relative drought tolerance, shade tolerance, common regeneration traits, dispersal 14 

mechanisms, and requirements for seed germination for each of the six conifer species included 15 

in this study. 16 

Species Drought 

Tolerance1 

Shade 

Tolerance1 

Regeneration Traits1 Dispersal 

Mechanisms 

Seed Germination1 

Douglas-fir Moderate Moderate Most trees produce 

cones at >12 cm DBH 

(40 years) (Rodman, 

Veblen, et al., 2021) . 

Wind and animals. 

Most dispersal 

within 120 m of a 

live tree (Kemp et 

al., 2016; 

McCaughey et al., 

1986). 

Most germination 

occurs within 150 

days of seedfall, but 

seeds remain viable 

for 1 or occasionally 2 

years. 

Engelmann 

spruce 

Low Moderate 

to High 

Most trees begin to 

produce cones at sizes 

> 5 cm DBH (ca. 25 

years) (Andrus, Harvey, 

et al., 2020); layering 

near timberline. 

Wind. Most 

dispersal < 150 m 

from live trees 

(Gill et al., 2020; 

McCaughey et al., 

1986). 

Germinates 2-3 

weeks after 

snowmelt, but can 

emerge following 

summer rains or in 

the second year. 

Lodgepole 

pine 

Moderate Low Starts producing seed 

at ca. 5-15 years 

(Turner et al., 2007). 

Individual trees have 

predominately open or 

closed (serotinous) 

cones at later ages.  

Serotinous genotype 

often produces open 

cones up until ~ 60 

years and then closed 

cones after. Closed 

cones can stay on the 

tree and remain viable 

for 40 years or more 

(Rhoades et al., 2022). 

Wind, serotiny, 

and animals. Most 

dispersal within 

60 m of live (non-

serotinous) or 

recently burned 

(serotinous) trees 

(Gill et al., 2020; 

McCaughey et al., 

1986). 

Requires light but not 

stratification. 

Germinates following 

snowmelt in spring or 

early summer. 
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Ponderosa 

pine 

High Low Most trees produce 

cones at >18 cm DBH 

(50 years). Seed 

production is episodic 

at tree- and stand-

scales (Krannitz & 

Duralia, 2004; Rodman, 

Veblen, et al., 2021; 

Wion et al., 2021). 

Wind and animals. 

Most dispersal 

within 90 m of a 

live tree 

(Chambers et al., 

2016; Kemp et al., 

2016; McCaughey 

et al., 1986). 

Cold-moist 

stratification not 

required. 

Subalpine 

fir 

Low High Most trees begin to 

produce cones at sizes 

> 7 cm DBH (ca. 30 

years) (Andrus, Harvey, 

et al., 2020); Layering 

can occur at high 

elevations. 

Wind. Most 

dispersal < 150 m 

from live trees 

(McCaughey et 

al., 1986). 

Cold-moist 

stratification 

required; germinates 

in spring. 

White fir Moderate Moderate 

to High 

Cones produced around 

20-50 years. 

Wind. Most 

dispersal < 150 m 

from live trees 

(McCaughey et 

al., 1986). 

Cold-moist 

stratification 

required. 

1: Where not otherwise indicated, information was derived from species summaries in FEIS and Silvics NA (Burns & 17 
Honkala, 1990; USDA Forest Service, Fire Effects Information System (FEIS), 2022) 18 

 19 

  20 
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Appendix S2: Correcting for Bias in Random Forest Predictions of Fire Severity 21 

 Regression predictions from Random Forests and other tree-based statistical learning 22 

algorithms can be prone to bias towards the mean (Belitz & Stackelberg, 2021; Parks et al., 23 

2019; Zhang & Lu, 2012). This occurs because tree-based predictions are made using averages 24 

of subsets of the data (Breiman et al., 1984), which can push predicted values towards the mean 25 

of the response variable. Because Random Forests are an ensemble of many individual tree-26 

based models (i.e., classification and regression trees), they can also be prone to such biases. We 27 

were interested in accurate predictions across a range of fire severities (i.e., the Composite Burn 28 

Index; CBI), therefore we performed a bias correction of predicted values. Specifically, we used 29 

a Z-score matching method described in Rodman et al. (2021) to match the mean and variance of 30 

predicted values with observed data. Similar transformations have been employed to correct bias 31 

in climate datasets and harmonize the distributions of differing data types (Bouwer et al., 2004; 32 

Flint & Flint, 2012). This transformation is based on the following equation: 33 

Equation S2.1: 34 

�̂�𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = ((
�̂�𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 − 𝜇𝑟𝑓

𝜎𝑟𝑓
) ∗  𝜎𝑜𝑏𝑠) + 𝜇𝑜𝑏𝑠 35 

where ŷuncorrected and ŷcorrected are the predicted values of CBI at a given sample point, before and 36 

after bias correction, respectively. Likewise, μrf  and μobs are the means and σrf and σobs are the 37 

standard deviations of RF-predicted and observed values of fire severity across all sample points 38 

in out-of-bag data. We applied this formula to predictions made in one-fire and reburn models 39 

separately because of differences in the training datasets. Values used in each formula are 40 

provided in Table S2.1. Following bias correction, any values outside of the typical range of CBI 41 

(i.e., [0, 3]) were truncated to [0, 3] as follows: 42 

 43 
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Equation S2.2: 44 

𝑓(�̂�𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) =  {

0   𝑖𝑓   �̂�𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 < 0
𝑥   𝑖𝑓   0 ≤ �̂�𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  ≤ 3

3   𝑖𝑓   �̂�𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 > 3
 45 

 46 

Table S2.1: Values used in bias correction (Eq. S2.1) for Random Forest predictions of fire 47 
severity. 48 

 μrf μobs σrf σobs 

One-fire model 1.449001 1.450123 0.5217355 0.9614945 

Reburn model 0.9581118 0.9564298 0.5216691 0.8038882 

 49 

  50 
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 51 

Figure S2.1: Results of bias correction for Random Forest-based predictions of fire severity 52 
(CBI; composite burn index) across recent (1985-2020) fires in the Southwest U.S. Uncorrected 53 

values (left) show predicted values of fire severity in the out-of-bag sample in the “one-fire 54 
model” (i.e., locations with only one large fire from 1985 to 2020). Corrected values (right) show 55 
predicted values of fire severity after applying Equation S2.1 and coefficients from Table S2.1. 56 

Red dashed lines show a 1:1 line of observed vs predicted values, and deviations from the slope 57 

of this line indicate prediction bias at the extremes. 58 
  59 
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 60 

Figure S2.2: Results of bias correction for Random Forest-based predictions of fire severity 61 

(CBI; composite burn index) across recent (1985-2020) fires in the Southwest U.S. Uncorrected 62 
values (left) show predicted values of fire severity in the out-of-bag sample in the “reburn 63 

model” (i.e., locations with two large fires from 1985 to 2020). Corrected values (right) show 64 
predicted values of fire severity after applying Equation S2.1 and coefficients from Table S2.1. 65 
Red dashed lines show a 1:1 line of observed vs predicted values, and deviations from the slope 66 

of this line indicate prediction bias at the extremes. 67 

 68 

  69 
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Appendix S3: Modeling Post-Fire Recruitment Potential and Developing the Recruitment Index 70 

To quantify the potential for existing forest communities to support post-fire recruitment 71 

across the region, we used ecological niche models for post-fire tree seedlings from Davis et al. 72 

(2023), who synthesized tree regeneration data from over 10,000 field plots throughout recently 73 

burned forests of the western United States (Table S3.1). Davis et al. (2023) developed binomial 74 

(logit link) generalized linear mixed models of recruitment probability for each of the six 75 

dominant conifer species in our study area based on biophysical variables, including average 76 

climate, post-fire drought stress, topography, fire severity, and seed source availability. While 77 

models were largely unchanged from those described in Davis et al. (2023), we replaced original 78 

topographic variables (i.e., 90-m spatial resolution) with 30-m topographic variables to better 79 

incorporate fine-scale topographic effects that are known to influence tree recruitment in this 80 

region (Andrus, Hart, et al., 2020; Rodman et al., 2020). Refitting models with these finer-scale 81 

spatial covariates slightly changed accuracy metrics and classification thresholds for each 82 

species, thus we summarize new models in Table S3.1.  83 

We used these models to develop regionwide 30-m maps of post-fire recruitment 84 

probability for each of the six conifer species included in our study (Figs. S3.1-S3.7). In 85 

developing these maps, we used measured climate conditions between 2001 and 2020, a period 86 

of extreme drought stress and an analog for near-term future conditions (Williams et al., 2022). 87 

Because we were interested in the potential for refugia to facilitate recovery in adjacent high-88 

severity areas, we used high fire severity values (i.e., relativized burn ratio [RBR] of 400; Parks 89 

et al., 2014) with the availability of a nearby seed tree (i.e., 30-m distance to seed tree) and 90 

moderate amounts of surviving canopy cover (i.e., mean cover of 12.3% in the a 300-m 91 

surrounding radius; the median surrounding tree cover of ‘high-severity’ plots in Davis et al. 92 
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[2023] throughout our study area). While we used CBI in our fire severity models, RBR was 93 

used here because it was used in the original models of Davis et al. (2023); RBR is strongly 94 

related to CBI (Parks et al., 2019) .  95 

Our regionwide predictive maps give the probability of at least 100 trees ha-1 of a given 96 

species establishing within 10 years of fire occurrence, assuming high fire severity, the 97 

availability of a nearby seed source, recent climate conditions, and existing topography at each 98 

site. We then used species-specific probability thresholds that maximized the sum of sensitivity 99 

and specificity (i.e., the true skill statistic [TSS]) to classify each 30-m pixel as “recruitment 100 

present” or “recruitment absent” for subsequent processing (Table S3.1; Fig. S3.1-S3.7). After 101 

developing binary species maps, we then used raster-based focal statistics to summarize tree 102 

species recruitment maps in the local neighborhood around each pixel, thereby converting pixel-103 

based estimates of recruitment presence into a local neighborhood metric describing the 104 

suitability for recruitment in the landscape around each pixel (Fig. S3.1). To do so, we developed 105 

species-specific dispersal kernels to quantify landscape suitability based on the distance-squared-106 

weighted refugia density metric of Coop et al. (2019), with a center cell weight of 0 (thereby 107 

quantifying recruitment potential in the landscape around a pixel, rather than the pixel itself). 108 

Our variation of this metric quantifies the focal sum of “presence” pixels for the recruitment of a 109 

given species, with pixels in a focal window weighted by the inverse of the squared distance 110 

from the focal refugia pixel. Because different tree species can disperse at different distances 111 

based on seed size and shape (McCaughey et al., 1986) which influences pattern of post-fire 112 

recruitment (Kemp et al., 2016), we used different window sizes for each species map, with 113 

heavier-seeded pines (e.g., lodgepole pine at 60 m, and ponderosa pine at 90 m) having smaller 114 

window sizes than Douglas-fir (120 m), Engelmann spruce (120 m), and true firs (e.g., subalpine 115 
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fir at 150 m, white fir at 150 m). All species values were scaled from 0 to 100 to ensure a 116 

consistent range despite differences in window sizes. Finally, we calculated a recruitment index 117 

(RI) as the weighted sum of all individual species maps, with weights based on the relative 118 

dominance (i.e., the proportion of total basal area [BA] for the six focal species) in each 30-m 119 

pixel (Fig. S3.1-S3.7). RI, ranging 0-100, summarizes the extent to which existing forest 120 

communities align with environmental conditions for post-fire recruitment in the surrounding 121 

landscape, and how well a surviving patch of forest might facilitate recovery into adjacent 122 

severely burned areas. 123 

  124 
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Table S3.1: Final statistical models, sample sizes, accuracy metrics, and probability thresholds to 125 

define presence/absence in predicting post-fire tree recruitment for each species. In “Model 126 

Predictors”, terms in “Poly(term, n)” are polynomial terms, where n gives the order of the 127 

polynomial, terms in “(1|term)” give random intercepts included in the final models, and 128 

“offset()” accounts for the probability of presence given sampling effort (i.e., plot sizes). Pairs of 129 

variables connected by “*” are bivariate interaction terms. Sample sizes (No. Plots and No. 130 

Fires) give the number of unique plot locations and fires included in data used to train each 131 

model. AUC (area under the receiver operating curve) is a measure of agreement in binary 132 

classifiers (e.g., presence/absence), where values range 0-1 with 1 indicating perfect agreement 133 

across a range of classification thresholds. AUC (full) shows the AUC value for the model when 134 

using the full dataset, and AUC (cv) shows the AUC value when comparing model predictions to 135 

withheld data in spatially stratified cross-validation. The “Presence/Absence” threshold identifies 136 

the probability cutoff that maximizes the sum of sensitivity and specificity for a given species 137 

(i.e., the True Skill Statistic; TSS); this threshold was used when developing maps of the 138 

recruitment index (RI; Appendix S3). 139 

Species Name Speci

es 

Code Model Predictors 

No. 

Plots 

No. 

Fires 

AUC 

(full) 

AUC 

(cv) 

Presence/A

bsence 

Threshold 

Douglas-fir 

PSME 

Pre-fire disturbance type, Poly(Heat Load 

Index [HLI], 2), Years since fire, Distance to 

seed source, Mean post-fire tree cover within 

300 m radius, Species variety, Average 

Climatic Water Deficit (CWD) in the driest 

month, Relativized Burn Ratio (RBR) * 

Minimum growing season CWD in 5 years 

after fire, RBR * Maximum growing season 

CWD in 5 years after fire,  offset(log(Plot 

size)), (1 | Fire Name) 6,015 274 0.74 0.74 0.29 

Engelmann 

spruce 

PIEN 

Pre-fire disturbance type, Years since fire, 

Mean post-fire tree cover within 300 m 

radius, Poly(RBR, 2), Distance to seed source, 

Poly(HLI, 2), Topographic Position Index (TPI), 

Poly(Minimum growing season CWD in 5 

years after fire, 2), Average Climatic Water 

Deficit (CWD) in the driest month, 

offset(log(Plot size)), (1 | Fire Name) 1,514 138 0.73 0.70 0.54 

Lodgepole 

pine 

PICO 

Pre-fire disturbance type, Years since fire, 

Maximum growing season precipitation in five 

years after fire * TPI, Poly(HLI, 2), Distance to 

seed source, Mean post-fire tree cover within 3,251 181 0.79 0.75 0.52 
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300 m radius, RBR * lodgepole variety, 

def30_gs_gm, poly(Maximum growing season 

CWD in 5 years after fire, 2), RBR * Maximum 

growing season precipitation in 5 years after 

fire, offset(log(Plot size)), (1 | Fire Name) 

Ponderosa 

pine 

PIPO 

Pre-fire disturbance type, Years since fire, HLI, 

Distance to seed source, Species variety * 

Poly(Mean post-fire tree cover within 300 m 

radius, 2), Species variety * RBR, Average 

CWD in the driest month, Maximum growing 

season CWD in 5 years after fire *      RBR, 

poly(Maximum growing season precipitation 

in 5 years after fire, 2), offset(log(Plot size)), 

(1 | Fire Name) 7,719 276 0.70 0.69 0.22 

Subalpine fir 

ABLA 

Pre-fire disturbance type, Years since fire, 

Poly(HLI,  2), Distance to seed source, RBR, 

Average CWD in the driest month, 

Poly(Maximum growing season CWD in 5 

years after fire, 2) * Mean post-fire tree cover 

within 300 m radius, offset(log(Plot size)), (1 | 

Fire Name) 2,174 139 0.81 0.78 0.13 

White fir 

ABCO 

Pre-fire disturbance type, Years since fire, 

Poly(HLI,  2), TPI, Distance to seed source, 

Species variety,  RBR, Mean post-fire tree 

cover within 300 m radius * Minimum 

summer vapor pressure deficit (VPD) in 5 

years after fire, Average annual CWD, 

offset(log(Plot size)), (1 | Fire Name) 3,846 192 0.73 0.70 0.30 

 140 

 141 
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 142 
Figure S3.1: A summary of the methods used to calculate the recruitment index (RI) in upland 143 

forests of the southwestern United States. For each of the six dominant conifers, we predicted 144 

post-fire recruitment probability, classified these probabilities into likely presence/absence of 145 

recruitment based on thresholds in Table S3.1, and calculated the distance-squared-weighted sum 146 

of presence values around each pixel (restricted to pixels within the dispersal distance of a given 147 

species). We then calculated RI as the weighted sum across all species, with weights based on 148 

relative abundance of each species in a given pixel.  149 
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 150 
Figure S3.2: Probability of post-fire recruitment (a) and relative dominance (i.e., percentage of 151 

total community basal area) (b) for Douglas-fir throughout the Southwest US. Recruitment 152 

predictions (a) were restricted to areas with at least 1 m2 ha-1 from the corresponding species 153 

(i.e., panel (b)) and give the probability of at least 100 seedlings ha-1 establishing within ten 154 

years of fire occurrence, assuming high-severity fire but the availability of a nearby seed source. 155 

Species basal area maps used in (b) were obtained from Wilson et al., (2013). The black 156 

horizontal line in the legend of (a) shows the probability threshold that best separates presence 157 

and absence in Table S3.1. 158 
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 159 
Figure S3.3: Probability of post-fire recruitment (a) and relative dominance (i.e., percentage of 160 

total community basal area) (b) for Engelmann spruce throughout the Southwest US. 161 

Recruitment predictions (a) were restricted to areas with at least 1 m2 ha-1 from the 162 

corresponding species (i.e., panel (b)) and give the probability of at least 100 seedlings ha-1 163 

establishing within ten years of fire occurrence, assuming high-severity fire but the availability 164 

of a nearby seed source. Species basal area maps used in (b) were obtained from Wilson et al., 165 

(2013). The black horizontal line in the legend of (a) shows the probability threshold that best 166 

separates presence and absence in Table S3.1. 167 

 168 
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 169 
Figure S3.4: Probability of post-fire recruitment (a) and relative dominance (i.e., percentage of 170 

total community basal area) (b) for lodgepole pine throughout the Southwest US. Recruitment 171 

predictions (a) were restricted to areas with at least 1 m2 ha-1 from the corresponding species 172 

(i.e., panel (b)) and give the probability of at least 100 seedlings ha-1 establishing within ten 173 

years of fire occurrence, assuming high-severity fire but the availability of a nearby seed source. 174 

Species basal area maps used in (b) were obtained from Wilson et al., (2013). Note that 175 

lodgepole pine is partially serotinous, and does not need live seed trees for post-fire 176 

establishment in many areas. The black horizontal line in the legend of (a) shows the probability 177 

threshold that best separates presence and absence in Table S3.1. 178 

 179 
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 180 
Figure S3.5: Probability of post-fire recruitment (a) and relative dominance (i.e., percentage of 181 

total community basal area) (b) for ponderosa pine throughout the Southwest US. Recruitment 182 

predictions (a) were restricted to areas with at least 1 m2 ha-1 from the corresponding species 183 

(i.e., panel (b)) and give the probability of at least 100 seedlings ha-1 establishing within ten 184 

years of fire occurrence, assuming high-severity fire but the availability of a nearby seed source. 185 

Species basal area maps used in (b) were obtained from Wilson et al., (2013). The black 186 

horizontal line in the legend of (a) shows the probability threshold that best separates presence 187 

and absence in Table S3.1. 188 
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 189 
Figure S3.6: Probability of post-fire recruitment (a) and relative dominance (i.e., percentage of 190 

total community basal area) (b) for subalpine fir throughout the Southwest US. Recruitment 191 

predictions (a) were restricted to areas with at least 1 m2 ha-1 from the corresponding species 192 

(i.e., panel (b)) and give the probability of at least 100 seedlings ha-1 establishing within ten 193 

years of fire occurrence, assuming high-severity fire but the availability of a nearby seed source. 194 

Species basal area maps used in (b) were obtained from Wilson et al., (2013). The black 195 

horizontal line in the legend of (a) shows the probability threshold that best separates presence 196 

and absence in Table S3.1. 197 
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 198 
Figure S3.7: Probability of post-fire recruitment (a) and relative dominance (i.e., percentage of 199 

total community basal area) (b) for white fir throughout the Southwest US. Recruitment 200 

predictions (a) were restricted to areas with at least 1 m2 ha-1 of the corresponding species (i.e., 201 

panel (b)) and give the probability of at least 100 seedlings ha-1 establishing within ten years of 202 

fire occurrence, assuming high-severity fire but the availability of a nearby seed source. Species 203 

basal area maps used in (b) were obtained from Wilson et al., (2013). The black horizontal line in 204 

the legend of (a) shows the probability threshold that best separates presence and absence in 205 

Table S3.1. 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 
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Appendix S4: Quantifying Uncertainty in Regionwide Predictions 214 

Methods: Mapping and Summarizing Predictive Uncertainty 215 

 To describe and visualize uncertainty in our predictions of fire severity (i.e., CBI; 216 

composite burn index), post-fire recruitment, and the locations of potential refugia, we developed 217 

pointwise prediction intervals of fire severity and post-fire recruitment throughout the study area. 218 

We then propagated this uncertainty throughout the same analytical process used to develop the 219 

recruitment index (RI; Appendix S3) and map potential refugia. Because models of fire severity 220 

(Random Forests) and post-fire recruitment (generalized linear mixed models) were developed 221 

using different statistical frameworks, methods of calculating these prediction intervals differed 222 

among models. For models of fire severity, we used quantile regression forests, a variation of 223 

Random Forests that can predict the conditional distribution of a response, and a common 224 

method of developing prediction intervals (Meinshausen, 2006). We used these models to predict 225 

the 15.9th (i.e., lower) and 84.1st quantiles (i.e., upper) of the conditional distribution of fire 226 

severity within each 30-m pixel (Fig. S4.1). We selected these quantiles because they 227 

approximate the mean ± one standard deviation in a standard normal distribution, and were 228 

consistent with the width of prediction intervals in our recruitment predictions. For models of 229 

recruitment probability of each tree species, we mapped the standard error of prediction for each 230 

30-m pixel using the ‘glmmTMB’ package in R (Brooks et al., 2017), following Davis et al. 231 

(2023). On the logit scale, we added and subtracted the standard error of the prediction from the 232 

predicted population-level mean value, and then converted these values to the scale of the 233 

response (i.e., probabilities of 0-1) using the inverse logit transformation (Figs. S4.2-S4.7). All 234 

prediction intervals can be interpreted as containing ca. 68.2% of likely outcomes based on the 235 

underlying data and the findings from our models. Variation in the width of these intervals is 236 
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shown in the rightmost columns of Figs. S4.1-4.7, and demonstrates variation in model 237 

uncertainty throughout the study area. 238 

  Next, we used prediction intervals of recruitment probability for each species to calculate 239 

lower and upper bounds of the recruitment index (RI) (Fig. S4.8). We did this following similar 240 

methods to the calculation of RI described in the Appendix S3 and Fig. S3.1, but by replacing the 241 

population-level mean probabilities of each species with the lower and upper values of the 242 

prediction interval. Thus, the lower bound of the RI indicates assumes that all species had a 243 

lower probability of recruitment than expected (i.e., mean probability minus one standard error 244 

of prediction), whereas the “upper” bound of the RI indicates the opposite – that all species had a 245 

higher probability of recruitment than expected (i.e., mean probability plus one standard error of 246 

prediction). Variation in RI, calculated as the difference between these two bounds, is shown in 247 

Fig. S4.8c.  248 

Finally, we mapped the locations of potential refugia by incorporating predictive 249 

uncertainty from both fire severity and recruitment models using two possible scenarios 250 

bracketing the range of likely outcomes (Fig. S4.9). The first (i.e., “lower”) scenario assumed 251 

that fire severity was greater than expected (i.e., 84.1st percentile) across the entire study area, 252 

while the RI was lower than expected (i.e., 15.9th percentile of each species’ recruitment 253 

probability). In other words, this scenario assumes that conditions for the formation and 254 

maintenance of refugia, and their ability to support recruitment, are worse than might be 255 

expected given the model results and underlying data throughout the study area. The second 256 

scenario (i.e., “upper”) serves as an alternative in which fire severity was lower than expected 257 

(i.e., 15.9th percentile) and the RI was higher than expected (i.e., 84.1st percentile). Thus, the 258 

upper scenario represents an optimistic view of fire refugia and their ability to support post-fire 259 
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recruitment. We compared these two scenarios by identifying pixels that were assigned to the 260 

same refugia class in each map (i.e., “areas of agreement”).  261 

Results: Spatial Variation in Uncertainty of Model Predictions  262 

 Uncertainty in predictions of fire severity, species-specific recruitment probability, RI, 263 

and potential refugia varied markedly throughout the study area. Overall, prediction intervals of 264 

fire severity were fairly wide (Fig. S4.1), despite the promising performance of the model in 265 

spatially stratified cross-validation (Table 3 in the main text). We interpret this to mean that 266 

predictions of central tendency (i.e., the conditional mean) for fire severity are fairly reliable, but 267 

the width of prediction intervals also highlights the stochastic and complex nature of fire 268 

behavior, beyond what could be easily described using the spatial datasets considered here. 269 

Variation in the width of prediction intervals across the study area also demonstrates that there is 270 

greater uncertainty and scenarios than others. For example, under moderate weather conditions, 271 

much of the Arizona/New Mexico Mountains is predicted to be unburned, or burn at low to 272 

moderate severity (i.e., CBI < 2.25) with relatively high certainty when compared to other 273 

portions of the study area (Fig. S4.1c). Likewise, areas that have experienced recent fire (i.e., 274 

2020 fires in northern Colorado and southern Wyoming), have greater certainty under moderate 275 

conditions, highlighting their importance as fire breaks during moderate weather. In contrast, 276 

areas with greater certainty under extreme fire weather tended to be dense-canopied, higher-277 

elevation forests in the Southern Rocky Mountains (Fig. S4.1c). Thus, it can be stated with 278 

greater certainty that such areas are likely to burn at moderate to high severity (i.e., CBI > 1.25) 279 

under extreme weather than other forests throughout the study area. 280 

 In comparison to models of fire severity, models of recruitment probability had relatively 281 

narrow prediction intervals (Figs. S4.2-S4.7), though a direct comparison is difficult given 282 
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differences in underlying statistical methods, and the nature of the response variable (i.e., 283 

continuous vs. binary). However, because of the comparatively narrow prediction intervals for 284 

many species, RI values in “lower” and “upper” scenarios did not substantially differ throughout 285 

much of the study area (Fig. S4.8). A notable exception is in central Arizona, where predicted RI 286 

values were relatively high (Fig. 6 in the main text; Fig. S4.8, Table S4.1), but also had high 287 

uncertainty relative to many other portions of the region (Fig. S4.8c). Many of these areas are 288 

dominated by ponderosa pine, and predicted post-fire recruitment in this area is close to the 289 

statistical threshold that separates likely presence and absence for the species (Fig. S3.5). Thus, a 290 

reduction of one standard error of the prediction for this species puts many 30-m pixels below 291 

the threshold for species presence (Table S3.1), which in turn reduces the community-weighted 292 

recruitment index in central Arizona. In contrast, areas with dominance by other tree species 293 

show comparatively greater certainty in RI values. 294 

 The locations of potential refugia in lower and upper scenarios illustrate notable 295 

uncertainty, as well as some generalizable trends (Fig. S4.9). Altering RI and fire severity using 296 

values from their prediction intervals lead to important changes in the amount and distribution of 297 

refugia with high recruitment, refugia with low recruitment, and non-refugia. Under moderate 298 

weather, 8.7% of total study area shows class agreement between the lower and upper scenarios 299 

(Fig. S4.9c), of which 99.5% was either refugia with high recruitment (25.7%) or refugia with 300 

low recruitment (73.8%), and less than 0.5% were non-refugia. Under extreme weather, 17.5% 301 

of the total study area exhibited class agreement between lower and upper scenarios, primarily 302 

(99.7%) in “non-refugia”, with only 0.3% in refugia with low or high recruitment. Thus, 303 

predicted locations of refugia are more certain under moderate weather conditions, whereas the 304 

predicted locations of non-refugia are more certain under extreme weather conditions.  305 
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 306 
Figure S4.1: Uncertainty in predictions from models of fire severity (i.e., CBI) presented in Figs. 307 

3-5 in the main text. Panels (a, d) give the “lower” bounds of the prediction interval (i.e., the 308 
15.9th percentile), panels (b, e) give the “upper” bounds of the prediction interval (i.e., the 84.1st 309 
percentile). Predictions were made using quantile regression forests, with percentiles for lower 310 
and upper bounds selected to approximate the mean ± one standard error of the prediction. 311 

Panels (c, f) show the width of the prediction interval (i.e., upper minus lower bounds), with 312 
brighter areas having comparatively greater uncertainty. Boxplots above each panel summarize 313 
regionwide values within each map.  314 

  315 
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 316 
Figure S4.2: Uncertainty in predictions from the model of post-fire Douglas-fir recruitment 317 

probability, presented in Table S3.1 and Fig. S3.2. Panel (a) gives the “lower” bounds of the 318 

prediction interval (i.e., the 15.9th percentile; mean minus one standard error of the prediction) 319 

and panel (b) gives the “upper” bounds of the prediction interval (84.1st percentile; i.e., mean 320 

plus one standard error of the prediction). Panel (c) shows the width of the prediction interval 321 

(i.e., upper minus lower), with brighter areas having comparatively greater uncertainty. Maps 322 

were restricted to areas with at least 1 m2 ha-1 of the corresponding species. The black horizontal 323 

line in the legend of (a) shows the probability threshold that best separates presence and absence 324 

in Table S3.1. Boxplots above each panel summarize regionwide values within each map. 325 

 326 
  327 
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 328 
Figure S4.3: Uncertainty in predictions from the model of post-fire Engelmann spruce 329 

recruitment probability, presented in Table S3.1 and Fig. S3.3. Panel (a) gives the “lower” 330 
bounds of the prediction interval (i.e., the 15.9th percentile; mean minus one standard error of the 331 
prediction) and panel (b) gives the “upper” bounds of the prediction interval (84.1st percentile; 332 

i.e., mean plus one standard error of the prediction). Panel (c) shows the width of the prediction 333 
interval (i.e., upper minus lower), with brighter areas having comparatively greater uncertainty. 334 

Maps were restricted to areas with at least 1 m2 ha-1 of the corresponding species. The black 335 

horizontal line in the legend of (a) shows the probability threshold that best separates presence 336 

and absence in Table S3.1. Boxplots above each panel summarize regionwide values within each 337 
map. 338 

  339 
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 340 
Figure S4.4: Uncertainty in predictions from the model of post-fire lodgepole pine recruitment 341 

probability, presented in Table S3.1 and Fig. S3.4. Panel (a) gives the “lower” bounds of the 342 
prediction interval (i.e., the 15.9th percentile; mean minus one standard error of the prediction) 343 
and panel (b) gives the “upper” bounds of the prediction interval (84.1st percentile; i.e., mean 344 

plus one standard error of the prediction). Panel (c) shows the width of the prediction interval 345 
(i.e., upper minus lower), with brighter areas having comparatively greater uncertainty. Maps 346 

were restricted to areas with at least 1 m2 ha-1 of the corresponding species. The black horizontal 347 

line in the legend of (a) shows the probability threshold that best separates presence and absence 348 

in Table S3.1. Boxplots above each panel summarize regionwide values within each map. 349 
  350 
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 351 
Figure S4.5: Uncertainty in predictions from the model of post-fire ponderosa pine recruitment 352 

probability, presented in Table S3.1 and Fig. S3.5. Panel (a) gives the “lower” bounds of the 353 
prediction interval (i.e., the 15.9th percentile; mean minus one standard error of the prediction) 354 
and panel (b) gives the “upper” bounds of the prediction interval (84.1st percentile; i.e., mean 355 

plus one standard error of the prediction). Panel (c) shows the width of the prediction interval 356 
(i.e., upper minus lower), with brighter areas having comparatively greater uncertainty. Maps 357 

were restricted to areas with at least 1 m2 ha-1 of the corresponding species. The black horizontal 358 

line in the legend of (a) shows the probability threshold that best separates presence and absence 359 

in Table S3.1. Boxplots above each panel summarize regionwide values within each map. 360 
  361 
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 362 
Figure S4.6: Uncertainty in predictions from the model of post-fire subalpine fir recruitment 363 

probability, presented in Table S3.1 and Fig. S3.6. Panel (a) gives the “lower” bounds of the 364 
prediction interval (i.e., the 15.9th percentile; mean minus one standard error of the prediction) 365 
and panel (b) gives the “upper” bounds of the prediction interval (84.1st percentile; i.e., mean 366 

plus one standard error of the prediction). Panel (c) shows the width of the prediction interval 367 
(i.e., upper minus lower), with brighter areas having comparatively greater uncertainty. Maps 368 

were restricted to areas with at least 1 m2 ha-1 of the corresponding species. The black horizontal 369 

line in the legend of (a) shows the probability threshold that best separates presence and absence 370 

in Table S3.1. Boxplots above each panel summarize regionwide values within each map. 371 
  372 
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 373 
Figure S4.7: Uncertainty in predictions from the model of post-fire white fir recruitment 374 

probability, presented in Table S3.1 and Fig. S3.7. Panel (a) gives the “lower” bounds of the 375 
prediction interval (i.e., the 15.9th percentile; mean minus one standard error of the prediction) 376 
and panel (b) gives the “upper” bounds of the prediction interval (84.1st percentile; i.e., mean 377 

plus one standard error of the prediction). Panel (c) shows the width of the prediction interval 378 
(i.e., upper minus lower), with brighter areas having comparatively greater uncertainty. Maps 379 

were restricted to areas with at least 1 m2 ha-1 of the corresponding species. The black horizontal 380 

line in the legend of (a) shows the probability threshold that best separates presence and absence 381 

in Table S3.1. Boxplots above each panel summarize regionwide values within each map. 382 
  383 
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 384 
Figure S4.8: Uncertainty in predictions of the recruitment index (RI), presented in Fig. 6 of the 385 
main text. Panel (a) gives RI calculated using the lower bounds of the prediction interval for each 386 

tree species (i.e., panel [a] maps in Figs. S4.2-4.7), whereas panel (b) gives RI calculated using 387 
the upper bounds for each species (i.e., panel [b] maps in Figs. S4.2-4.7). Panel (c) shows the 388 

width of the prediction interval (i.e., upper minus lower bounds), with brighter areas having 389 
comparatively greater uncertainty. Boxplots above each panel summarize regionwide values 390 
within each map. 391 

  392 
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 393 
Figure S4.9: Spatially explicit uncertainty of the locations of refugia with high recruitment, 394 

refugia with low recruitment, and non-refugia, presented in Fig. 7 of the main text. Panels (a, d) 395 
give potential refugia locations calculated using the upper bounds of fire severity (i.e., CBI, 396 
composite burn index; Fig. S4.1a) under each fire weather scenario, and lower bounds of the 397 
recruitment index (i.e., RI; Fig. S4.8a), whereas panels (b, e) give the locations of potential 398 

refugia using the lower bounds of fire severity (Fig. S4.1b) under each fire weather scenario, and 399 
upper bounds of the recruitment index (Fig. S4.8b). Panels (c, f) show locations of agreement 400 
between lower and upper panels, and have comparatively greater certainty. Boxplots above each 401 

panel summarize regionwide values within each map. 402 
  403 
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Table S4.1: Predicted values of fire severity (CBI; Fig. 5 in main text and Fig. S4.1) and the 404 
recruitment index (RI; Fig. 6 in main text and Fig. S4.8) across upland conifer forests of the 405 

southwestern US. Numbers before parentheses are the mean predicted value within each EPA 406 
Level III ecoregion (EPA, 2021). Parenthetical values are the mean width of pointwise prediction 407 
intervals in Figs. S4.1c (left column), S4.1f (middle column) and S4.8c (right column), 408 
approximately two standard errors of the prediction. 409 

Ecoregion Fire Severity – 
Moderate Weather 

Fire Severity – 
Extreme Weather 

Recruitment 
Index 

Arizona/New Mexico Mountains 0.46 (1.23) 1.41 (2.51) 29.15 (60.78) 
Madrean Archipelago 0.76 (1.61) 1.53 (2.46) 6.98 (16.11) 
Southern Rocky Mountains 1.13 (2.32) 1.98 (2.16) 38.04 (25.09) 
Wasatch and Uinta Mountains 0.96 (2.21) 1.90 (2.24) 55.33 (13.62) 

Overall 0.94 (2.03) 1.83 (2.25) 37.9 (32.4) 

 410 

  411 
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