Logs, snags, and trees: woody habitat structures in Colorado forests Lehnert, S.L., Slack A.W. Colorado Forest Restoration Institute, Department of Forest and Rangeland Stewardship,

Colorado State University, Fort Collins, CO

INTRODUCTION

Raptors, cavity nesting birds, and mammals utilize woody habitat structures (WHS) in the form of **snags, wildlife logs, and living trees with decay and deformities**¹. Features such as cavities, lightning scars, brooming, and broken tops enhance WHS for a variety of wildlife activities. In the Colorado Rocky Mountain region, there is little understanding of the distribution and quality of WHS. Understanding the prevalence of WHS in fire-suppressed untreated forests is important to gaining a baseline understanding of habitat availability before forest treatments are implemented that may impact wildlife of concern. Consequently, we asked the following questions in three Colorado forest types:

- What is the **abundance** of WHS across forest types? Does abundance differ significantly between forest type?
- How prevalent are features that enhance the **quality** of WHS? Does quality differ significantly between forest types?

	Food source	Denning or nesting	Cover from predators	Scanning or hunting platform	Incre acce hear
Cavities		Х	Х		Х
Hollows		Х	Х		Х
Broken tops		Х	Х	Х	Х
Dead tops		Х		Х	Х
Conks					Х
Fire/lightning scars					Х
Witches' brooming		Х	Х		
Mistletoe shoots	Х				

METHODS

Field sites were selected in stands with no history of forest management and no moderate to high severity fire in the last 30 years. 65 sites were established: 26 in **mixed conifer**, 31 in ponderosa-pine dominant, and 8 in pinyon pine-dominant forest.

Per site, logs, snags, and living trees were measured and assessed for the presence of wildlife features². Logs were measured in a 1/100th ac plot from the site's center. Overstory measurements were recorded using 10 BAF prism variable radius plots (22 sites) and fixed $1/10^{th}$ ac plots (43 sites).

Abundance		Mixe	d Conifer	(MC)	Ponder	osa Pine	(PIPO)	Pinyo	on Pine (F	PIEN)
		Forest Type <i>(</i>		Forest Type		Forest Type				
		Mean	SD	Ν	Mean	SD	Ν	Mean	SD	N
Wildlife Tree	Density	37.2 ^b	43.1	26	101 ^a	86.4	31	5 ^b	10.7	8
Wildlife Tree	Relative Abundance	.17	_	-	.52	-	-	.02	_	-
Snag	Density	35.3 ^a	45.8	26	7.5	12	31	0 ^b	0	8
Wildlife Log	Density	150 ^a	127	26	109.7	185	31	0 ^b	0	8
Wildlife Log	Volume	7.3	13.9	20	3.8	4.9	13	-	-	-

Table 3. The unit for density is *the woody structure/acre;* the unit for volume is in *cubic feet*. Relative abundance is the ratio of wildlife tree density out of total tree density. Superscripts denote statistically significant differences between forest types.

ACKNOWLEDGEMENTS: We are grateful to Maggie Parrish for field data collection, to Karolina Vida and Maura Gaughan for an initial literature review, to Anthony Martin for mapmaking, and to Camille Stevens-Rumann for editing and conceptual support.

REFERENCES

- . Bull, E. L., Parks, C. G., & Torgersen, T. R. (1997). Trees and logs important to wildlife in the interior Columbia River basin. Forest Service general technical report (No. PB-97- 199947/XAB; FSGTR-PNW-391). Forest Service, Portland, OR (United States). Pacific Northwest Research Station. . Colorado Forest Restoration Institute (2023). Woody Habitat Structure Monitoring: Protocol Addendum. CFRI-2317a. . Davis, C. R., Belote, R. T., Williamson, M. A., Larson, A. J., & Esch, B. E. (2016). A rapid forest assessment method for multiparty monitoring across landscapes. Journal of Forestry, 114(2), 125-133.
- 4. Ganey, J. L., & Vojta, S. C. (2004). Characteristics of snags containing excavated cavities in northern Arizona mixed-conifer and ponderosa pine forests. Forest Ecology and Management, 199(2-3), 323-332.

eased	Drumming
ss to	tower
TWOOD	
	Y
	Λ
	X
	NAV2.55
S AL	
化对开	

- time before it is classified as a "snag".

cavities/wildlife tree. Wildlife trees were also are more abundant on the landscape and tend to have a longer lifespan, thus increasing the time that cavities can be used and re-Recommended: follow-up study post treatment to assess how abundance and quality of WHS is affected through management actions aimed at wildfire risk reduction

COLORADO FOREST RESTORATION INSTITUTE COLORADO STATE UNIVERSITY